首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 134 毫秒
1.
The non-linear dynamic behaviors of a rotor-bearing-seal coupled system are investigated by using Muszynska’s non-linear seal fluid dynamic force model and non-linear oil film force, and the result from the numerical analysis is in agreement with the one from the experiment. The bifurcation of the coupled system is analyzed under different operating conditions. It is indicated that the dynamic behavior of the rotor-bearing-seal system depends on the rotation speed, seal clearance and seal pressure of the rotor-bearing-seal system. The system state trajectory, Poincaré maps, frequency spectra and bifurcation diagrams are constructed to analyze the dynamic behavior of the rotor center. Various non-linear phenomena in the coupled system, such as periodic motion and quasi-periodic motion are investigated. The results show that the system has the potential for chaotic motion. The study may contribute to a further understanding of the non-linear dynamics of such a rotor-bearing-seal coupled system.  相似文献   

2.
Yang  Jiancheng  Li  Changyou  Xu  Mengtao  Yang  Tianzhi  Zhang  Yimin 《Nonlinear dynamics》2022,107(3):1965-1987

In this study, a novel kinetic model is established to investigate the dynamic characteristic of the ball screw feed system by considering the thermal deformation of bearing joints, screw-nut joints and screw shaft. Based on the Hertz contact theory, the relationship between elastic restoring force and axial deformation of bearing joints and screw-nut joints is obtained, respectively. Then the dynamic characteristics of the kinetic equation are analyzed by Runge–Kutta method. The vibration characteristics of the feed system with and without thermal deformation are analyzed, and the results indicate that the amplitude becomes larger when thermal deformation is considered. The motion state of the feed system at different frequencies is analyzed, and the results show that with the change of frequency, the motion state of the system will appear period-doubling motion, quasi-periodic motion and chaotic motion. Finally, the influence of different parameters on the vibration characteristics of the system is discussed.

  相似文献   

3.
航空发动机轴承腔中油滴运动与沉积的特性分析   总被引:2,自引:0,他引:2  
本文在获得轴承腔中气相介质流场的基础上,采用Lagrangian方法建立油滴在气相介质流场中运动的分析模型,通过瞬时步进法数值模拟油滴的运动过程,获得了油滴直径和旋转轴转速对油滴运动过程中的速度和轨迹影响的规律.基于获得的油滴与腔壁碰撞前的运动状态,以及结合油滴与腔壁的碰撞模型,实现了油滴直径和旋转轴转速对碰撞后油滴沉积率和动量转移率影响规律的分析.结果表明:油滴直径和旋转轴转速对油滴速度及轨迹,以及油滴沉积率及动量转移率都有很大影响,而且前者的影响更为明显.与国外同等条件下的试验结果对比表明,本文提出的油滴运动与沉积特性分析方法具有较好的可靠性和精度.碰撞前后油滴运动状态和沉积率及动量转移率的计算,为下一步油膜厚度和速度的计算,继而为轴承腔润滑设计和换热分析提供了初始条件.  相似文献   

4.
This work reports a numerical study undertaken to investigate the dynamic response of a rotor supported by two turbulent flow model journal bearings with nonlinear suspension and lubricated with couple stress fluid under quadratic damping. This may be the first time that analysis of rotor-bearing system considered the quadratic damping effect. The dynamic response of the rotor center and bearing center are studied. The analysis methods employed in this study are inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincaré maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The modeling results provide some useful insights into the design and development of rotor-bearing system for rotating machinery that operates at highly rotational speed and highly nonlinear regimes.  相似文献   

5.
This study presents a dynamic analysis of a flexible rotor supported by two porous squeeze micropolar fluid-film journal bearings with nonlinear suspension. The dynamics of the rotor center and bearing center are studied. The analysis of the rotor–bearing system is investigated under the assumptions of non-Newtonian fluid and a short bearing approximation. The spatial displacements in the horizontal and vertical directions are considered for various nondimensional speed ratios. The dynamic equations are solved using the Runge–Kutta method. The methods of analysis employed in this study are inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincaré maps, and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The numerical results show that the stability of the dynamic system varies with the nondimensional speed ratios, the nondimensional parameter, and permeability. The modeling results obtained by using the method proposed in this paper can be employed to predict the dynamics of the rotor–bearing system, and the undesirable behavior of the rotor and bearing centers can be avoided.  相似文献   

6.
Due to the micro-fabrication limitations and the low thickness of the silicon wafer, the length-to-diameter ratio (L/D) of the gas journal bearings in Power MEMS is about one order lower than that of the conventional bearings, which suggests that the viscous friction force in the micro-bearing is comparable to the load capacity. The effects of viscous friction force on non-linear dynamic characteristics of the ultra-short micro-bearing-rotor system are studied in this paper. The molecular gas-film lubrication model, which valid for arbitrary Knudsen numbers, is systematically coupled with the rotor kinetic equations and solved simultaneously to investigate the non-linear dynamic behavior of the system. The center orbits, phase portraits, Poincaré maps, and FFT spectra of the system response at different L/D ratio, rotor mass, and bearing number, and the corresponding bifurcation diagrams for cases of ignoring and considering viscous friction force are inspected and compared. The results indicate that, if the viscous friction force is not taken into account in the case of low L/D ratio, the low-frequency large-amplitude self-excited whirl motion will be predicted as the increase of the rotor mass and the bearing number. However, when the viscous friction force is included in the non-linear dynamic model, the rotor motion becomes more stable under the same conditions, as the synchronous motion with smaller amplitude prevails.  相似文献   

7.
Guido  A. R.  Adiletta  G. 《Nonlinear dynamics》1999,19(4):359-385
In a previous paper, the dynamic behaviour of a Jeffcott rotor was studied in the presence of pure static unbalance and nonlinear elastic restoring forces. The present paper extends the analysis to a rigid rotor with an axial length such as to make the transverse moment of inertia greater than the axial one. As in the previous investigation, the elastic restoring forces are assumed to be nonlinear and the effects of couple unbalance are also included but, unlike the Jeffcott rotor, the system exhibits six degrees-of-freedom. The Lagrangian coordinates were fixed so as to coincide with the three coordinates of the centre of mass of the rotor and the three angular coordinates needed in order to express the rotor's rotations with respect to a reference frame having its origin in the centre of mass. The precession motions of such a rotor turn out to be cylindrical at low angular speeds and exhibit a conical aspect when operating at higher speeds. The motion equations of the rotor were written with reference to a system that was subsequently adopted for the experimental analysis. The particular feature of this system was the use of a steel wire (piano wire) for the rotor shaft, suitably constrained and with the possibility of regulating the tension of the wire itself, in order to increase or reduce the nonlinear character of the system. The numerical analysis performed with integration of the motion equations made it possible to point out that chaotic solutions were manifested only when the tension in the wire was given the lowest values – i.e. when the system was strongly nonlinear – in the presence of considerable damping and rotor unbalance values that were so high as to lose any practical significance. Under conditions commonly shared by analogous real systems characterised by poor damping, where the contribution to nonlinearity is almost entirely due to elastic restoring forces, the analysis pointed out that precession motions may be manifested with a periodic character, whether synchronous or not, or a quasi-periodic character, but in no case is the solution chaotic.  相似文献   

8.
引入非线性动力学理论和混沌时间序列分析方法考察地震动作用下单自由度体系动力响应的混沌特性。输入典型近断层地震动记录,定量计算了代表性周期的单自由度弹性和非弹性体系加速度响应时程的非线性特性参数。计算表明,这些加速度响应的关联维数为分数维,最大Lyapunov指数大于0;地震动激励下单自由度体系的地震动力响应具有混沌特性,不是完全的随机信号,为理解结构地震动力响应的不规则性与复杂性提供了新思路和新视角。  相似文献   

9.
An investigation is carried out on the systematic analysis of the dynamic behavior of the hybrid squeeze-film damper (HSFD) mounted a gear-bearing system with strongly non-linear oil-film force and gear meshing force in the present study. The dynamic orbits of the system are observed using bifurcation diagrams plotted using the dimensionless unbalance coefficient, damping coefficient and the dimensionless rotating speed ratio as control parameters. The non-dimensional equations of the gear-bearing system are solved using the fourth order Runge-Kutta method. The onset of chaotic motion is identified from the phase diagrams, power spectra, Poincaré maps, bifurcation diagrams, maximum Lyapunov exponents and fractal dimension of the gear-bearing system. The results presented in this study provide some useful insights into the design and development of a gear-bearing system for rotating machinery that operates in highly rotating speed and highly non-linear regimes.  相似文献   

10.
轻载径向滑动轴承中Taylor涡动的产生和影响研究   总被引:2,自引:0,他引:2  
本文用原始变量法直接求解了三维的N-S方程,计算分析了高速旋转有限长圆柱轴承中油膜层流失稳产生涡动的临界Taylor数及流场、压力场和摩擦阻力。轴承端部泄油量等的变化。结果表明,在有限长同心圆柱轴承中,随着轴旋转速度的提高,轴承磨擦阻力线性增大,油膜层流失稳出现的涡动增加轴承摩擦阻力并减少轴承端部泄油量,油膜层流失稳后,轴承长度方向均匀地排列着一些流体涡,涡动的强度从轴承中间截面向轴承端部逐渐减弱  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号