首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for computing target element size for tidal, shallow water flow is developed and demonstrated. The method, Localized truncation error analysis with complex derivatives (LTEA-CD) utilizes localized truncation error estimates of the linearized shallow water momentum equations consisting of complex derivative terms. This application of complex derivatives is the chief way in which the method differs from a similar existing method, LTEA. It is shown that LTEA-CD produces results that are essentially equivalent to those of LTEA (which in turn has been demonstrated to be capable of producing practicable target element sizes) with reduced computational cost. Moreover, LTEA-CD is capable of computing truncation error and corresponding target element sizes at locations up to and including the boundary, whereas LTEA can be applied only on the interior of the model domain. We demonstrate the convergence of solutions over meshes generated with LTEA-CD using an idealized representation of the western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico.  相似文献   

2.
The successful implementation of a finite element model for computing shallow‐water flow requires the identification and spatial discretization of a surface water region. Since no robust criterion or node spacing routine exists, which incorporates physical characteristics and subsequent responses into the mesh generation process, modelers are left to rely on crude gridding criteria as well as their knowledge of particular domains and their intuition. Two separate methods to generate a finite element mesh are compared for the Gulf of Mexico. A wavelength‐based criterion and an alternative approach, which employs a localized truncation error analysis (LTEA), are presented. Both meshes have roughly the same number of nodes, although the distribution of these nodes is very different. Two‐dimensional depth‐averaged simulations of flow using a linearized form of the generalized wave continuity equation and momentum equations are performed with the LTEA‐based mesh and the wavelength‐to‐gridsize ratio mesh. All simulations are forced with a single tidal constituent, M2. Use of the LTEA‐based procedure is shown to produce a superior (i.e., less error) two‐dimensional grid because the physics of shallow‐water flow, as represented by discrete equations, are incorporated into the mesh generation process. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an a posteriori approach to unstructured mesh generation via a localized truncation error analysis and applies it to the Western North Atlantic Tidal (WNAT) model domain. The WNAT model domain encompasses the Gulf of Mexico, the Caribbean Sea, and the North Atlantic Ocean east to the 60°W Meridian. Herein, we pay particular attention to the area surrounding the Bahamas.

A bathymetric data set with fine resolution is employed in seven separate linear, harmonic simulations of shallow water tidal flow for seven different tidal-forcing constituents. Each set of simulation results is used to perform a truncation error analysis of a linear, harmonic form of the depth-averaged momentum equations for each of the seven different tidal-forcing frequencies. Truncation error is then driven to a more uniform, domain-wide value by solving for local node spacing requirements. The process is built upon successful research aiming to produce unstructured grids for large-scale domains that can be used in the accurate and efficient modeling of shallow water flow. The methodology described herein can also be transferred to other modeling applications.  相似文献   

4.
The successful implementation of a finite element model for computing shallow water flow requires: (1) continuity and momentum equations to describe the physics of the flow, (2) boundary conditions, (3) a discrete surface water region, and (4) an algebraic form of the shallow water equations and boundary conditions. Although steps (1), (2), and (4) may be documented and can be duplicated by multiple scientific investigators, the actual spatial discretization of the domain, i.e. unstructured mesh generation, is not a reproducible process at present. This inability to automatically produce variably-graded meshes that are reliable and efficient hinders fast application of the finite element method to surface water regions. In this paper we present a reproducible approach for generating unstructured, triangular meshes, which combines a hierarchical technique with a localized truncation error analysis as a means to incorporate flow variables and their derivatives. The result is a process that lays the groundwork for the automatic production of finite element meshes that can be used to model shallow water flow accurately and efficiently. The methodology described herein can also be transferred to other modeling applications.  相似文献   

5.
An automated procedure is described for the production of unstructured, finite element meshes to perform depth-integrated, hydrodynamic calculations in an ocean-scale, two-dimensional domain. Three relatively coarse meshes with nearly identical boundaries are automatically produced by basing internal size guidelines on a localized truncation error analysis that was performed using results from a highly resolved mesh.

Qualitative and quantitative comparisons of model performance are made at 150 historical tidal stations. The coarsest mesh is shown to meet or exceed the overall accuracy of the other meshes, including a highly resolved mesh that has over six times as many computational points. The automated procedure quickly and easily produces a computationally efficient and accurate finite element mesh that is reproducible. In addition, the methodology is shown to have potential for assessing the importance and accuracy of and bathymetric details and evaluating historical hydrodynamic data.  相似文献   

6.
From the linearized, time-independent, constant depth, shallow water tidal equations in an f-plane for a two-layer estuary, two independent modal Helmholtz equations are derived. These modal equations are solved using a fifth-degree finite element technique. The first and second space derivatives of the complex modal tidal elevations, and thus the modal currents and their first derivatives, are evaluated directly from the solution at each node of the finite element mesh. The Stokes drift, which is the major part of the residual tidal flow, is evaluated from these nodal values of the currents and their derivatives. Good agreement is obtained with the exact analytical solution for a wedge-shaped estuary with a wedge angle of π/3, using a mesh of 64 equilateral triangles with sides approximately 1/10 of the wavelength 2πC2/σ of a Kelvin wave solution for the short-wavelength mode.  相似文献   

7.
IntroductionTheshallowwaterequationsareanimportantmathematicalmodelforavarietyofprobleminhydraulicengineering .Inrecentyears,therehasbeeninterestinthenumericalsolutionfortheshallowwaterequations.Thenumericalsimulationsfortheshallowwaterequationsystemcanbeappliedtomanypurposes .First,itcanserveasameansformodelingtidalfluctuationsforthosenterestedincapturingtidalenergyforcommercialpurposes.Secondly ,thesesimulationscanbeusedtocomputetidalrangesandsurgessuchashurricanesandtsunamiscausedbyextreme…  相似文献   

8.
The goal of this paper is to show the effectiveness of a newly developed estimate of the truncation error calculated based on C1 interpolation of the solution weighted by the adjoint solution as the adaptation indicator for an unstructured finite volume solver. We will show that adjoint‐based mesh adaptation based on the corrected functional using the new developed truncation error estimate is capable of adapting the mesh to improve the accuracy of the functional and the convergence rate. Both discrete and continuous adjoint solutions are used for adaptation. Results are significantly better with new truncation error estimate than with previously used estimates.  相似文献   

9.
An initial-boundary value problem for shallow equation system consisting of water dynamics equations, silt transport equation, the equation of bottom topography change, and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element (MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived. The error estimates are optimal.  相似文献   

10.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   

11.
An initial-boundary value problem for shallow equation system consisting of water dynamics equations, silt transport equation, the equation of bottom topography change, and of some boundary and initial conditions is studied, the existence of its generalized solution and semidiscrete mixed finite element (MFE) solution was discussed, and the error estimates of the semidiscrete MFE solution was derived. The error estimates are optimal.  相似文献   

12.
两种湍流模型时域颤振计算方法研究   总被引:2,自引:2,他引:0  
采用时域计算分析方法进行了机翼跨音速颤振特性研究。在结构运动网格的基础上,采用格点格式有限体积方法进行空间离散和双时间全隐式方法进行时间推进求解雷诺平均N-S方程。针对流动粘性分别应用了SST湍流模型和SSG雷诺应力模型,通过对跨音速标模算例AGARD445.6机翼的计算结果与实验值的对比分析,其中应用SST湍流模型得到的颤振速度与实验值最为接近,特别是在跨音速段平均相对误差在3%以内;并且计算结果整体上反映了跨音速颤振"凹坑"物理特性,验证了方法的有效性。  相似文献   

13.
A parallel, finite element method is presented for the computation of three‐dimensional, free‐surface flows where surface tension effects are significant. The method employs an unstructured tetrahedral mesh, a front‐tracking arbitrary Lagrangian–Eulerian formulation, and fully implicit time integration. Interior mesh motion is accomplished via pseudo‐solid mesh deformation. Surface tension effects are incorporated directly into the momentum equation boundary conditions using surface identities that circumvent the need to compute second derivatives of the surface shape, resulting in a robust representation of capillary phenomena. Sample results are shown for the viscous sintering of glassy ceramic particles. The most serious performance issue is error arising from mesh distortion when boundary motion is significant. This effect can be severe enough to stop the calculations; some simple strategies for improving performance are tested. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
General Galerkin (G2) is a new computational method for turbulent flow, where a stabilized Galerkin finite element method is used to compute approximate weak solutions to the Navier–Stokes equations directly, without any filtering of the equations as in a standard approach to turbulence simulation, such as large eddy simulation, and thus no Reynolds stresses are introduced, which need modelling. In this paper, G2 is used to compute the drag coefficient cD for the flow past a circular cylinder at Reynolds number Re=3900, for which the flow is turbulent. It is found that it is possible to approximate cD to an accuracy of a few percent, corresponding to the accuracy in experimental results for this problem, using less than 105 mesh points, which makes the simulations possible using a standard PC. The mesh is adaptively refined until a stopping criterion is reached with respect to the error in a chosen output of interest, which in this paper is cD. Both the stopping criterion and the mesh‐refinement strategy are based on a posteriori error estimates, in the form of a space–time integral of residuals times derivatives of the solution of a dual problem, linearized at the approximate solution, and with data coupling to the output of interest. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a local domain‐free discretization (DFD) method for the simulation of unsteady flows over moving bodies governed by the incompressible Navier–Stokes equations. The discretization strategy of DFD is that the discrete form of partial differential equations at an interior point may involve some points outside the solution domain. All the mesh points are classified as interior points, exterior dependent points and exterior independent points. The functional values at the exterior dependent points are updated at each time step by the approximate form of solution near the boundary. When the body is moving, only the status of points is changed and the mesh can stay fixed. The issue of ‘freshly cleared nodes/cells’ encountered in usual sharp interface methods does not pose any particular difficulty in the presented method. The Galerkin finite‐element approximation is used for spatial discretization, and the discrete equations are integrated in time via a dual‐time‐stepping scheme based on artificial compressibility. In order to validate the present method for moving‐boundary flow problems, two groups of flow phenomena have been simulated: (1) flows over a fixed circular cylinder, a harmonic in‐line oscillating cylinder in fluid at rest and a transversely oscillating cylinder in uniform flow; (2) flows over a pure pitching airfoil, a heaving–pitching airfoil and a deforming airfoil. The predictions show good agreement with the published numerical results or experimental data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A new scheme is applied for increasing the accuracy of the penalty finite element method for incompressible flow by systematically varying from element to element the sign and magnitude of the penalty parameter λ, which enters through ?.v + p/λ = 0, an approximation to the incompressibility constraint. Not only is the error in this approximation reduced beyond that achievable with a constant λ, but also digital truncation error is lowered when it is aggravated by large variations in element size, a critical problem when the discretization must resolve thin boundary layers. The magnitude of the penalty parameter can be chosen smaller than when λ is constant, which also reduces digital truncation error; hence a shorter word-length computer is more likely to succeed. Error estimates of the method are reviewed. Boundary conditions which circumvent the hazards of aphysical pressure modes are catalogued for the finite element basis set chosen here. In order to compare performance, the variable penalty method is pitted against the conventional penalty method with constant λ in several Stokes flow case studies.  相似文献   

17.
This paper describes an adaptive quadtree grid‐based solver of the depth‐averaged shallow water equations. The model is designed to approximate flows in complicated large‐scale shallow domains while focusing on important smaller‐scale localized flow features. Quadtree grids are created automatically by recursive subdivision of a rectangle about discretized boundary, bathymetric or flow‐related seeding points. It can be fitted in a fractal‐like sense by local grid refinement to any boundary, however distorted, provided absolute convergence to the boundary is not required and a low level of stepped boundary can be tolerated. Grid information is stored as a tree data structure, with a novel indexing system used to link information on the quadtree to a finite volume discretization of the governing equations. As the flow field develops, the grids may be adapted using a parameter based on vorticity and grid cell size. The numerical model is validated using standard benchmark tests, including seiches, Coriolis‐induced set‐up, jet‐forced flow in a circular reservoir, and wetting and drying. Wind‐induced flow in the Nichupté Lagoon, México, provides an illustrative example of an application to flow in extremely complicated multi‐connected regions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
IntroductionThoughatransport_diffusion (orLagrange_Galerkin)method ,whichisalsocalledachar_acteristicsmethod ,isanoldone[1]andhasbeenextensivelyappliedtodealingwithPDEswithdiffusiontermand/orconvection ,ithadnotbeenmixedthefiniteelementmethodstotreatsuccessfullytheconvergenceofnumericalsolutionfortheNavier_Stokesequationsuntiltheearly198 0s[2 ].Intheearly 1 990s,Berm挷dezetal.[3]appliedthismethodtodealingwiththeshallowwaterequationsonlyincludingthecurrentandthedepthofwaterandonlyderi…  相似文献   

19.
The mixed finite element (MFE) methods for a shallow water equation system consisting of water dynamics equations, silt transport equation, and the equation of bottom topography change were derived. A fully discrete MFE scheme for the discrete-time along characteristics is presented and error estimates are established. The existence and convergence of MFE solution of the discrete current velocity, elevation of the bottom topography, thickness of fluid column, and mass rate of sediment is demonstrated.  相似文献   

20.
In this paper, the third‐order weighted essential non‐oscillatory (WENO) schemes are used to simulate the two‐dimensional shallow water equations with the source terms on unstructured meshes. The balance of the flux and the source terms makes the shallow water equations fit to non‐flat bottom questions. The simulation of a tidal bore on an estuary with trumpet shape and Qiantang river is performed; the results show that the schemes can be used to simulate the current flow accurately and catch the stronger discontinuous in water wave, such as dam break and tidal bore effectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号