首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
填埋气体迁移气-热-力耦合动力学模型的研究   总被引:8,自引:1,他引:8  
基于连续介质力学—势弹性力学原理,运用多场耦合理论建立了填理场中可压缩垃圾气体迁移耦合的动力学模型,并采用摄动法及积分变换法对该强非线性数学模型进行拟解析求解。通过算例对比分析,探讨了耦侵动力场中气压、温度和应力变化对可压缩气体迁移的影响,得出了垃圾气体迁移过程中的孔隙压力分布规律。结果表明,三场耦合作用与非耦合作用相对差别较大,耦合效应不能忽略。这为定量化研究垃圾气体在填埋场中的扩散状况以及污染气体的排放和收集、防止二次污染提供了可靠的理论依据。  相似文献   

2.
3.
页岩气储层中存在大量的纳微米孔隙,其中气体的流动规律不同于常规气藏. 文章考虑克努森扩散及解吸作用的影响,建立页岩气稳态条件下产能公式,利用渗流阻力法得到了页岩气储层压裂直井产能方程.结合生产实例,进行了数值模拟计算. 结果表明:当裂缝导流能力达到0.12μm2·cm 后,产气量增幅减小,由此对裂缝导流能力进行优化. 游离气产量占总产气量的85%~90%,游离气对总产气量贡献较大. 该模型为页岩气产能预测及开发指标优化提供了理论依据.  相似文献   

4.
IntroductionThetransportofcontaminantsinunsaturatedzonehascausedmuchattention .Inearly1960s,contaminationproblemsofsoilandgroundwaterhadbeenstudiedathomeandabroad[1].Andinrecentyears ,thetransformationandtransportationofcontaminantshavebeendeeplystudiedinthefieldsofhydrogeology ,petroleumengineering ,environmentalengineeringandsoon[2 ,3].Somecontaminanttransportmodelshavebeenpresentedsofar.Forexample ,Paker[4 ]etal.presentedaconstitutivemodelgoverningparametersofwater,gasandcontaminantswhenth…  相似文献   

5.
海床下水合物分解可能造成大量的生成气体泄漏. 气体渗漏一方面造成海床表层的破坏;另一方面使得海水密度减小造成海上一些结构的安全隐患. 本文通过实验研究泄漏气体在水中上升过程中的扩散行为,以及渗漏对海底粉砂土海床的破坏规律. 考虑压力,盖层厚度在渗漏气体对盖层土体形态破坏的影响,获得了气体在水中上升过程中的扩散角的特点,以及气体泄漏导致的海床冲刷坑范围随气体压力、土层厚度的变化规律,可以为进一步的研究和工程应用提供参考.  相似文献   

6.
CONSOLIDATION HEORY OF UNSATURATED SOIL BASED ON THE THEORY OF MIXTURE(Ⅰ)   总被引:1,自引:1,他引:1  
Unsaturated soil is a three-phase media and is composed of soil grain,water andgas.In this paper,the consolidation problem of unsaturated soil is investigated basedon the theory of mixture.A theoretical formula of effective stress on anisotropicporous media and unsaturated soil is derived.The principle of effective stress and theprinciple of Curie symmetry are taken as two fundamental constitutive principles ofunsaturated soil.A mathematical model of consolidation of unsaturated soil isproposed,which consists of25 partial differenfial equations with25 unknowns.Withthe help of increament linearizing method,the model is reduced to5 governingequations with5 unknowns,i.e.,the three displacement components of solid phase,thepore water pressure and the pore gas pressure.7 material parameters are involved inthe model and all of them can be measured using soil tests.It is convenient to use themodel to engineering practice.The well known Biot’s theory is a special case of themodel.  相似文献   

7.
Unsaturated soil is a three-phase media and is composed of soil grain, water and gas. In this paper, the consolidation problem of unsaturated soil is investigated based on the theory of mixture. A theoretical formula of effective stress on anisotropic porous media and unsaturated soil is derived. The principle of effective stress and the principle of Curie symmetry are taken as two fundamental constitutive principles of unsaturated soil. A mathematical model of consolidation of unsaturated soil is proposed, which consists of 25 partial differenfial equations with 25 unknowns. With the help of increament linearizing method, the model is reduced to 5 governing equations with 5 unknowns, i.e., the three displacement components of solid phase, the pore water pressure and the pore gas pressure. 7 material parameters are involved in the model and all of them can he measured using soil tests. It is convenient to use the model to engineering practice. The well known Biot’s theory is a special case of the model.  相似文献   

8.
煤层气在非饱和水流阶段的非定常渗流摄动解   总被引:3,自引:0,他引:3  
煤层甲烷由煤层的割理裂隙系统流入生产井一般经历:单相水流、非饱和流和气、水两相饱和流三个阶段,在非饱和流阶段,储层压力降至临界解吸压力之后,储存在煤基质中的吸附气体少量被解吸出来形成互不连续的气泡并阻止水的流动,含气量尚未达到饱和程度。同时煤层甲烷运移包含渗流场、变形场和应力场的动态耦合过程。本文考虑渗流过程中水-气两相不溶混流体与固体耦合作用,建立了非饱和水流阶段非定常渗流问题的流固耦合数学模型,对该强非线性一维数学模型采用摄动法和积分变换法进行解析求解,并讨论了其压力动态特性,分析了压力随饱和度S及时间t变化的规律和气相及耦合作用的影响,这些研究对煤层气、石油和天然气的开采等地下工程领域具有一定的指导意义。  相似文献   

9.
The heat and mass transfer in an unsaturated wet cylindrical porous bed packed with quartz particles was investigated theoretically for relatively low convective drying rates. Local thermodynamic equilibrium was assumed in the mathematical model describing the multi-phase flow in the unsaturated porous media using the energy and mass conservation equations to describe the heat and mass transfer during the drying. The drying model included convection and capillary transport of the free water, diffusion of bound water, and convection and diffusion of the gas. The numerical results indicated that the drying process could be divided into three periods, the temperature rise period, the constant drying rate period and the decreasing drying rate period. The numerical results agreed well with the experimental data verifying that the mathematical model can evaluate the drying performance of porous media for low drying rates. The effects of drying conditions such as the ambient temperature, the relative humidity, and the velocity of the drying air, on the drying process were evaluated by numerical solution.  相似文献   

10.
非饱和土力学理论的研究进展   总被引:2,自引:0,他引:2  
回顾了非饱和土有效应力的发展,目前普遍认同采用两个应力变量来建立本构模型,且对基质吸力中毛细和粘吸两部分作用进行了阐述。分析了非饱和土强度问题,包括抗剪强度和抗拉强度。讨论了非饱和土的本构模型问题,包括基于净应力和基质吸力的弹塑性模型,基于Bishop有效应力和基质吸力的水力力学耦合弹塑性模型,以及双孔隙结构的模型。最后探讨了热力学方法和多孔介质理论在非饱和土中的应用,基于多孔介质理论在多场耦合条件下土体复杂的行为是当前值得研究的问题。  相似文献   

11.
页岩气和致密砂岩气藏微裂缝气体传输特性   总被引:3,自引:0,他引:3  
页岩气和致密砂岩气藏发育微裂缝,其开度多在纳米级和微米级尺度且变化大,因此微裂缝气体传输机理异常复杂.本文基于滑脱流动和努森扩散模型,分别以分子之间碰撞频率和分子与壁面碰撞频率占总碰撞频率的比值作为滑脱流动和努森扩散的权重系数,耦合这两种传输机理,建立了微裂缝气体传输模型. 该模型考虑微裂缝形状和尺度对气体传输的影响. 模型可靠性用分子模拟数据验证.结果表明:(1)模型能够合理描述微裂缝中所有气体传输机理,包括连续流动,滑脱流动和过渡流动;(2)模型能够描述不同开发阶段,微裂缝中各气体传输机理对传输贡献的逐渐变化过程;(3)微裂缝形状和尺度影响气体传输,相同开度且宽度越大的微裂缝,气体传输能力越强,且在高压和微裂缝大开度的情况下表现更明显.   相似文献   

12.
Diffusive transport through geosynthetic clay liners and engineered compacted clay landfill liners is the primary mechanism for mass transport from well-engineered modern landfills. For this reason, accurate estimates of diffusion coefficients for clay soils are essential for the design of engineered liner systems. A long-standing theoretical problem is the role of anion exclusion on the estimation of diffusion coefficients for ionic solutes migrating through charged porous media. This paper describes the steady-state solution of a fully coupled set of transport equations modeling ion movement through a permanently charged platy-clay soil. The microscale analysis takes into account the actual diffusion coefficient for each ion species, ion-pairing (as required by electroneutrality of the solution), as well as anion exclusion and cation inclusion ,arising from the permanent charge on clay particles. To render the problem tractable, the theoretical analysis focuses on an extremely small two-dimensional unit cell in an ideal, saturated, two-phase porous medium. The analysis presented here is limited to a particular geometrical example, but this example is sufficiently general for characteristic behaviours of systems of this kind to be identified. Most importantly, new insight is gained into the mechanism of ion migration through a charged platy-clay soil. The numerical results obtained from this study show that the identification of macroscopic transport quantities such as effective diffusion coefficients and membrane potentials from diffusion cell tests using standard diffusion theory only hold for a specific system. While ion exclusion behaviours are often referred to in the literature, as far as the authors are aware there has been no previous detailed microscale analysis of their role in steady-state diffusion through a charged platy-clay soil.  相似文献   

13.
Itisalwaysdifficulttofindthesolutionsoftheequationforthemovementofwaterinunsaturatedsoi1.Theprimar}'reasonisthatthehydraulicconductivityK(T)orthediffusivityofsoiIwaterD(o)isfunctionofwaterpotential(W)orwatercontent'(o)'Atpresent,thegeneralwaystofindthesol…  相似文献   

14.
研究非饱和土的强度是非饱和土理论及其工程应用的首要问题,但因复杂应力状态下基质吸力的控制技术、量测技术和吸力平衡时间等原因,非饱和土真三轴试验研究的进展迟缓. 在介绍非饱和土刚性真三轴仪、柔性真三轴仪和刚柔复合型真三轴仪的基础上,重点分析已有非饱和土刚性和柔性真三轴试验结果,总结现有非饱和土真三轴仪及其试验研究的不足,同时指出Mohr-Coulomb 强度准则和外接圆Drucker-Prager准则对非饱和土真三轴试验结果的不适用性. 应开展更多不同种类非饱和土的完整真三轴试验研究,特别是非饱和黏性土;应结合非饱和土的应力状态变量和强度特性,建立符合工程实际受力状况的非饱和土真三轴强度准则,完善非饱和土的理论基础.  相似文献   

15.
《Comptes Rendus Mecanique》2017,345(4):248-258
The aim of this work was to simulate in two dimensions the spatio-temporal evolution of the moisture content, the temperature, the solid (dry matter) concentration, the dry product total porosity, the gas porosity, and the mechanical stress within a deformable and unsaturated product during convective drying. The material under study was an elongated cellulose–clay composite sample with a square section placed in hot air flow. Currently, this innovative composite is used in the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation (moisture, insects, etc.). A comprehensive and rigorous hydrothermal model had been merged with a dynamic linear viscoelasticity model based on Bishop's effective stress theory, assuming that the stress tensor is the sum of solid, liquid, and gas stresses. The material viscoelastic properties were measured by means of stress relaxation tests for different water contents. The viscoelastic behaviour was described by a generalized Maxwell model whose parameters were correlated to the water content. The equations of our model were solved by means of the ‘COMSOL Multiphysics’ software. The hydrothermal part of the model was validated by comparison with experimental drying curves obtained in a laboratory hot-air dryer. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of material potential damage. The sample shape was also predicted all over the drying process.  相似文献   

16.
非饱和膨胀土的土-水特征曲线研究   总被引:4,自引:0,他引:4  
毛尚之 《力学学报》2002,10(2):129-133
在干旱和半干旱地区 ,土体中含水量的变化常会引发各种工程问题。研究表明 ,非饱和土的工程性质不仅取决于土的组成、结构和应力状态 ,还与土中的吸力密切相关。非饱和土的土 -水特征曲线表达了土体中含水量与吸力的关系 ,是非饱和土研究的重要内容之一。  相似文献   

17.
Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elastc-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained.  相似文献   

18.
A model for simulating water flow and air flow in unsaturated soils is presented herein. Drainage from a one-dimensional soil column is specifically investigated. A mathematical analysis of the equations reveals that, due to a vanishing diffusion process, the gradient of the water degree of saturation is infinite at the water table. Moreover, this discontinuity propagates at a velocity that satisfies a local non-linear equation involving only the properties of the material. A numerical simulation of this problem serves to confirm the results obtained.  相似文献   

19.
Numerical models that solve transport of pollutants at the macroscopic scale in unsaturated porous media need the effective diffusion dependence on saturation as an input. We conducted numerical computations at the pore scale in order to obtain the effective diffusion curve as a function of saturation for an academic sphere packing porous medium and for a real porous medium where pore structure knowledge was obtained through X-ray tomography. The computations were performed using a combination of lattice Boltzmann models based on two relaxation time (TRT) scheme. The first stage of the calculations consisted in recovering the water spatial distribution into the pore structure for several fixed saturations using a phase separation TRT lattice Boltzmann model. Then, we performed diffusion computation of a non-reactive solute in the connected water structure using a diffusion TRT lattice Boltzmann model. Finally, the effective diffusion for each selected saturation value was estimated through inversion of a macroscopic classical analytical solution.  相似文献   

20.
Water vapor diffusion through the soil is an important part in the total water flux in the unsaturated zone of arid or semiarid regions and has several significant agricultural and engineering applications because soil moisture contents near the surface are relatively low. Water vapor diffusing through dry soil is absorbed for both long and short terms. Long-term absorption allows more water to enter than exit the soil, as reflected in the concentration gradient. Short-term absorption leads to an apparent reduction in the diffusion rate, as reflected in the diffusion coefficient. This investigation studied the effects of soil temperature and porosity on the isothermal diffusion of water vapor through soil. The diffusion model consisted of 25.4 cm × 8.9 cm × 20.3 cm Plexiglas box divided into two compartments by a partition holding a soil reservoir. Water vapor moved from a container suspended by a spring in one compartment, through the porous medium in the center of the model, to calcium chloride in a container suspended by a spring in the other compartment. The porous materials consisted of aggregates of varying size (2–2.8, 1–2, and 0.5–1 mm) of a Fayatte silty clay loam (a fine-silty, mixed mesic Typic Hapludalf). The flow rates of water vapor were measured at temperatures of 10, 20, 30, and 40°C. Warmer temperatures increased the rate of diffusion through dry soil while reduced the amount of water absorbed by that soil. Reducing porosity slowed the rate of diffusion and increased the amount of water absorbed. The dry soil in this study absorbed from 1/8 to 2/3 of the diffusing water. Maximum absorption rates occurred with the most compact soil samples at the highest temperature, though the maximum absorption as a percentage of the diffusing water was in the compact samples at the lowest temperature. The diffusivity equation D/D 0 = [(S – 0.1)/0.9]2 fit the D/D 0 values obtained from these data if a coefficient of 1/3 or 1/3.5 is added to correct for the time delays caused by temporary sorption of the diffusing water vapor. The data, influenced by the interaction of water vapor and soil materials, represent a diffusion rate lower than the diffusion rate that would have resulted without this interaction. Mention of trade names, proprietary products, or specific equipment is intended for reader information only and does not constitute a guarantee or warranty by the USDA-ARS nor does it imply approval of the product named to the exclusion of other products. An erratum to this article can be found at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号