首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A shear-compression specimen for large strain testing   总被引:5,自引:0,他引:5  
A new specimen geometry, the shear-compression specimen (SCS), has been developed for large strain testing of materials. The specimen consists of a cylinder in which two diametrically opposed slots are machined at 45° with respect to the longitudinal axis, thus forming the test gage section. The specimen was analyzed numerically for two representative material models, and various gage geometries. This study shows that the stress (strain) state in the gage, is three-dimensional rather than simple shear as would be commonly assumed. Yet, the dominant deformation mode in the gage section is shear, and the stresses and strains are rather uniform. Simple relations were developed and assessed to relate the equivalent true stress and equivalent true plastic strain to the applied loads and displacements. The specimen was further validated through experiments carried out on OFHC copper, by comparing results obtained with the SCS to those obtained with compression cylinders. The SCS allows to investigate a large range of strain rates, from the quasi-static regime, through intermediate strain rates (1–100 s−1), up to very high strain rates (2×104s−1 in the present case).  相似文献   

2.
An experimental study was conducted on the inhomogeneous cyclic plastic deformation of 1045 steel under multiaxial cyclic loading. Thin-walled tubular specimens were used and small strain gages were bonded on the specimen surface to characterize the local deformation. The controlled loading paths included cyclic tension–compression, cyclic torsion, proportional axial-torsion, 90°-out-of-phase axial-torsion, and fully reversed torsion with a constant axial stress. The maximum stress in each experiment was lower than the lower yield stress of the material. It was found that the cyclic plastic deformation within the gage section of the specimen under multiaxial stress state followed the three-stage process that was observed from uniaxial loading, namely, incubation, propagation, and saturation. The plastic deformation was significantly inhomogeneous during the propagation stage, and the inhomogeneity continued through the saturation stage. The duration of each stage and the saturated strains were dependent on the cyclic stress amplitude and the loading path. Multiaxial stress state reduced the incubation stage. With identical equivalent stress magnitude, the nonproportional loading path resulted in the shortest incubation and propagation stages, and the saturated equivalent plastic strain magnitude was the smallest. Although the deformation over the gage section was inhomogeneous, the plastic deformation in a given local area was found to be practically isotropic.  相似文献   

3.
A new design of the shear compression specimen (SCS) for investigating the viscoelastic shear response of polymers is presented. The specimen consists of a polymer gage section with two metal ends that remain essentially rigid during deformation. Two closed-form analytic models are developed to predict the average stress and strain in the gage section from the deformation-load histories. This new SCS design and its analytic models are thoroughly evaluated via laboratory measurements and numerical simulations. These simulations show that the deformations in the gage section are more uniform than in the original design, and the distribution of the average shear stress and strain are highly homogenous. The simulation results yield good agreement with those of closed-form analytic results and the experiments demonstrate that the new SCS geometry and its analytic models are as reliable as other commonly employed specimens. It can also generate higher strain rates under usual loading conditions because of its smaller specimen gage length. The need for care in specimen preparation is also discussed in detail as illuminated by the experimental and simulation results.
W.G. Knauss (SEM Fellow)Email:
  相似文献   

4.
An experimental study of the macroscopic plastic flow nonhomogeneity in the course of a uniaxial tensile test is conducted on several aluminum alloys, nickel and 4340 steel. It was observed that the plastic flow initiates throughout the entire gage length in a nonuniform fashion, so that the growth of the deformation in the middle of the gage is faster than it is at the edges. That initial strain rate gradient almost disappeared shortly after its evolution, and the strain rate through the entire gage length became about uniform. The plastic flow nonuniformity emerged again upon further stretching, producing a gradual acceleration in the middle of the gage with corresponding slowdown toward the edges. That final development of the strain rate gradient commenced well in advance of the load maxima and was the cause of the consequent neck formation in the middle portion of the gage. It is demonstrated that the origin of plastic flow nonhomogeneity stemmed from the second elastic strain component in the transverse direction and its gradient evolution along the reduced section upon loading. It is found empirically that acceleration in the strain rate in the middle part of the reduced section was accompanied by a reduction in the apparent strainhardening exponent,n, calculated from the stress/strain chart. The maxima in the apparent strain-hardening exponent,n, obtained from the common stress/strain charts can be used to indicate the strain rate gradient onset.  相似文献   

5.
A uniaxial tension sheet metal coupon with a tapered instead of a straight gage section has been used for centering the location of diffuse neck and for measuring sheet stretchability in a non-uniform strain field. A finite element analysis of such a tensile coupon made of automotive steel sheet metals has been carried out to assess the effect of the tapered gage section geometry and material plastic strain hardening characteristics on the development of local plastic deformation pattern and local stress state, especially beyond the onset of diffuse necking but before localized necking. In particular, the finite element analysis was used in this study to evaluate the accuracy and reliability of an experimental data analysis method for estimating the post-necking effective plastic stress-strain curve based on the direct local surface axial plastic strain measurements for base metal, heat-affected zone, and weld metals of a dual-phase steel DP600. It is concluded that the estimated lower and upper bounds of the effective stress-strain curve at large strains are not satisfactory for low strain-hardening materials such as heat-affected zone and weld metals with the tapered tension coupons. A simple correction method utilizing only the additional local surface strain measurement in the transverse direction is proposed and it is shown to be effective in correcting the estimated effective stress-strain curve of dual-phase steel weld metals obtained for two tapered gage section geometries.  相似文献   

6.
Inhomogeneous plastic deformation of 1045 steel under monotonic loading was experimentally studied. Thin-walled tubular specimens were used in the experiments and custom-made small strain gages were bonded on the specimen surface to characterize the local deformation. Experiments were conducted under tension, torsion, and combined tension–torsion. During the propagation of Lüders bands, the local deformation experienced two-stage deformation: an abrupt plastic deformation stage followed by a slower deformation process. In some area of the gage section of the specimen, a small amount of initial plastic deformation occurred before the Lüders front reached. During the propagation of Lüders bands, multiple Lüders fronts can be formed. Under tension, torsion, and combined tension–torsion with a constant axial load, the Lüders front was approximately parallel to the material plane of maximum shear stress. When the combined axial-torsion followed a proportional fashion, the stress–extensometer strain responses were dependent on the axial/torsional loading ratio, and the Lüders fronts were oriented differently and propagated along the specimen axis at a different velocity. The local strain was inhomogeneous even at the work-hardening stage. The relationships between the equivalent stress and the equivalent plastic strain were found to be practically identical for all the loading cases studied.  相似文献   

7.
An experimental technique is proposed to determine the tensile stress–strain curve of metals at high strain rates. An M-shaped specimen is designed which transforms a compressive loading at its boundaries into tensile loading of its gage section. The specimen can be used in a conventional split Hopkinson pressure bar apparatus, thereby circumventing experimental problems associated with the gripping of tensile specimens under dynamic loading. The M-specimen geometry provides plane strain conditions within its gage section. This feature retards necking and allows for very short gage sections. This new technique is validated both experimentally and numerically for true equivalent plastic strain rates of up to 4,250/s.  相似文献   

8.
A hybrid experimental-computational procedure to establish accurate true stress-plastic strain curve of sheet metal specimen covering the large plastic strain region using shear compression test data is described. A new shear compression jig assembly with a machined gage slot inclined at 35° to the horizontal plane of the assembly is designed and fabricated. The novel design of the shear compression jig assembly fulfills the requirement to maintain a uniform volume of yielded material with characteristic maximum plastic strain level across the gage region of the Shear Compression Metal Sheet (SCMS) specimen. The approach relies on a one-to-one correlation between measured global load–displacement response of the shear compression jig assembly with SCMS specimen to the local stress-plastic strain behavior of the material. Such correlations have been demonstrated using finite element (FE) simulation of the shear compression test. Coefficients of the proposed correlations and their dependency on relative plastic modulus were determined. The procedure has been established for materials with relative plastic modulus in the range 5?×?10?4?<?(E p /E)?<?0.01. It can be readily extended to materials with relative plastic modulus values beyond the range considered in this study. Nonlinear characteristic hardening of the material could be established through piecewise linear consideration of the measured load–displacement curve. Validity of the procedure is established by close comparison of measured and FE-predicted load–displacement curve when the provisional hardening curve is employed as input material data in the simulation. The procedure has successfully been demonstrated in establishing the true stress-plastic strain curve of a demonstrator 0.0627C steel SCMS specimen to a plastic strain level of 49.2 pct.  相似文献   

9.
The shear compression specimen (SCS), which is used for large strain testing, is thoroughly investigated numerically using three-dimensional elastoplastic finite element simulations. In this first part of the study we address quasi-static loading. A bi-linear material model is assumed. We investigate the effect of geometrical parameters, such as gage height and root radius, on the stress and strain distribution and concentration. The analyses show that the stresses and strains are reasonably uniform on a typical gage mid-section, and their average values reflect accurately the prescribed material model. We derive accurate correlations between the averaged von Mises stress and strain and the applied experimental load and displacement. These relations depend on the specimen geometry and the material properties. Numerical results are compared to experimental data, and an excellent agreement is observed. This study confirms the potential of the SCS for large strain testing of material.  相似文献   

10.
Part I of this work addressed quasi-static loading of the shear compression specimen (SCS), which has been especially developed to investigate the shear dominant response of materials at various strain rates. The stress and strain states were characterized numerically. Approximations were presented to reduce the measured load,P, and displacement,d, into equivalent stress and strain . This paper addresses dynamic loading of the SCS. Several simulations were made for representative materials, whose stress-strain behavior is assumed to be rate-independent. The results show that stress wave loading induces strong oscillations in theP-d curve. However, the curve remains smooth in the gage section. The oscillations are about the quasistatic load values, so that with suitable filtering of the dynamicP-d curves, the quasi-static ones are readily recovered. Consequently, the approach that was developed for quasi-static loading of the SCS is now extended to dynamic loading situations. The average strain rate is rather constant and scales linearly with the prescribed velocity. As the plastic modulus becomes smaller, the strain rate reaches higher values. Friction at the end pieces of the specimen is also investigated, and shown to have a small overall influence on the determined mechanical characteristics. This paper thereby confirms the potential of the SCS for large strain testing of materials, using a unified approach, over a large range of strain rates in a seamless fashion.  相似文献   

11.
The influence of strain hardening exponent on two-parameter J-Q near tip opening stress field characterization with modified boundary layer formulation and the corresponding validity limits are explored in detail. Finite element simulations of surface cracked plates under uniaxial tension are implemented for loads exceeding net-section yield. The results from this study provide numerical methodology for limit analysis and demonstrate the strong material dependencies of fracture parameterization under large scale yielding. Sufficient strain hardening is shown to be necessary to maintain J-Q predicted fields when plastic flow progresses through the remaining ligament. Lower strain hardening amplifies constraint loss due to stress redistribution in the plastic zone and increases the ratio of tip deformation to J. The onset of plastic collapse is marked by shape change and/or rapid relaxation of tip fields compared to those predicted by MBL solutions and thus defining the limits of J-Q dominance. A radially independent Q-parameter cannot be evaluated for the low strain hardening material at larger deformations within a range where both cleavage and ductile fracture mechanisms are present. The geometric deformation limit of near tip stress field characterization is shown to be directly proportional to the level of stress the material is capable of carrying within the plastic zone. Accounting for the strain hardening of a material provides a more adjusted and less conservative limit methodology compared to those generalized by the yield strength alone. Results from this study are of relevance to establishing testing standards for surface cracked tensile geometries.  相似文献   

12.
The 3D image correlation technique is used for full field measurement of strain (and strain rate) in compression and tensile split Hopkinson bar experiments using commercial image correlation software and two digital high-speed cameras that provide a synchronized stereo view of the specimen. Using an array of 128 × 80 (compression tests) and 258 × 48 (tensile tests) pixels, the cameras record about 110,000 frames per second. A random dot pattern is applied to the surface of the specimens. The image correlation algorithm uses the dot pattern to define a field of overlapping virtual gage boxes, and the 3-D coordinates of the center of each gage box are determined at each frame. The coordinates are then used for calculating the strains throughout the surface of the specimen. The strains determined with the image correlation method are compared with those determined from analyzing the elastic waves in the bars, and with strains measured with strain gages placed on the specimens. The system is used to study the response of OFE C10100 copper. In compression tests, the image correlation shows a nearly uniform deformation which agrees with the average strain that is determined from the waves in the bars and the strains measured with strain gages that are placed directly on the specimen. In tensile tests, the specimen geometry and properties affect the outcome from the experiment. The full field strain measurement provides means for examining the validity and accuracy of the tests. In tests where the deforming section of the specimen is well defined and the deformation is uniform, the strains measured with the image correlation technique agree with the average strain that is determined from the split Hopkinson bar wave records. If significant deformation is taking place outside the gage section, and when necking develops, the strains determined from the waves are not valid, but the image correlation method provides the accurate full field strain history.  相似文献   

13.
Dynamic tensile experimental techniques of high-strength alloys using a Kolsky tension bar implemented with pulse shaping and advanced analytical and diagnostic techniques have been developed. The issues that include minimizing abnormal stress peak, determining strain in specimen gage section, evaluating uniform deformation, as well as developing pulse shaping for constant strain rate and stress equilibrium have been addressed in this study to ensure valid experimental conditions and obtainment of reliable high-rate tensile stress–strain response of alloys with a Kolsky tension bar. The techniques were applied to characterize the tensile stress–strain response of a 4330-V steel at two high strain rates. Comparing these high-rate results with quasi-static data, the strain rate effect on the tensile stress–strain response of the 4330-V steel was determined. The 4330-V steel exhibits slight work-hardening behavior in tension and the tensile flow stress is significantly sensitive to strain rate.  相似文献   

14.
A standardizing strain gage that meets the requirements for long-time stability of strain measurements is described in this paper. Statistical analyses of the strain calibration results taken over a period of 13 months showed no significant differences between successive calibrations at a 5-percent significance level. From the results of the strain calibrations of 134 gages, the resistance-deformation characteristicdR/dW had a mean of 120.31 ohms/in. with a coefficient of variation of 1.43 percent. Evaluation tests using 6×12 in. concrete cylinders compared the strains measured by the standardizing gage to those measured by the Berry gage. Statistical analyses of these results showed equivalent accuracy of strain measured by the standardizing strain gage at comparable precision.  相似文献   

15.
Gu  G. H.  Moon  J.  Park  H. K.  Kim  Y.  Seo  M. H.  Kim  H. S. 《Experimental Mechanics》2021,61(8):1343-1348
Background

Measuring true stress–strain curve over a large-strain-range is essential to understand mechanical behavior and simulate non-linear plastic deformation. The digital image correlation (DIC) technique, a non-contact full-field optical measurement technique, is a promising candidate to obtain a long-range true stress–strain curve experimentally.

Objective

This paper proposes a method for measuring true stress–strain curves over a large-strain-range during tensile testing using DIC.

Methods

The wide-strain-range true stress–strain curves of dual-phase and low carbon steels were extracted on the transverse direction in the neck region. The axial strain on the neck section was estimated by averaging the inhomogeneous deformation on the cross-section of the tensile specimen. The true stress was calculated from the engineering stress and the cross-sectional area of the neck.

Results

The validity of the proposed method was assessed by comparing the experimental load–displacement responses during tensile testing with the finite element method (FEM) simulation results. The stress and strain on the neck section estimated using the FEM and DIC, respectively, were proven to satisfy the uniaxial condition and successfully obtained.

Conclusions

The experimental results agree well with the FEM results. The proposed concept can be applied to various deformation modes for accurately measuring long-range true stress–strain curves.

  相似文献   

16.
Cruciform specimens have long been used in planar biaxial testing of inanimate materials such as metals and composite materials. The efforts to improve the geometric design of cruciform specimens have focused on maximizing the degree of uniformity of stress and strain in the gage section. The standardization of the procedure for the determination of the mean stress in the gage section is lacking, however, because the exact load transferred from the grippers to the gage section during testing is unknown. Here, we introduce a novel split-arm design for cruciform specimens by taking into account three important factors: i) the effectiveness of load transfer from the grippers to the gage section, ii) the uniformity of normal stress (in the loading direction) over the symmetry line, and iii) the compatibility between the nominal stress and the true stress. By ensuring these conditions, one can estimate more accurately the mean stress in the gage section based on the measured force at the grippers and the deformed configuration of a reference length. A genetic algorithm coupled with finite element analysis was utilized to optimize the geometric shape of the novel cruciform design. The identified optimum design provides a load transfer effectiveness of 100 %. The calculated nominal stress deviates from the true stress at the center of the specimen by only ?0.49 %. A numerical experiment was conducted to validate the substantially improved performance of the optimized new design. Experiments were also conducted for natural latex rubber to demonstrate the application of the proposed design.  相似文献   

17.
The size dependent deformation of Cu single crystal micropillars with thickness ranging from 0.2 to 2.5 μm subjected to uniaxial compression is investigated using a Multi-scale Dislocation Dynamics Plasticity (MDDP) approach. MDDP is a hybrid elasto-viscoplastic simulation model which couples discrete dislocation dynamics at the micro-scale (software micro3d) with the macroscopic plastic deformation. Our results show that the deformation field in these micropillars is heterogeneous from the onset of plastic flow and is confined to few deformation bands, leading to the formation of ledges and stress concentrations at the surface of the specimen. Furthermore, the simulation yields a serrated stress–strain behavior consisting of discrete strain bursts that correlates well with experimental observations. The intermittent operation and stagnation of discrete dislocation arms is identified as the prominent mechanism that causes heterogeneous deformation and results in the observed macroscopic strain bursts. We show that the critical stress to bow an average maximum dislocation arm, whose length changes during deformation due to pinning events, is responsible for the observed size dependent response of the single crystals. We also reveal that hardening rates, similar to that shown experimentally, occur under relatively constant dislocation densities and are linked to dislocation stagnation due to the formation of entangled dislocation configuration and pinning sites.  相似文献   

18.
In general, the shear localization process involves initiation and growth. Initiation is expected to be a stochastic process in material space where anisotropy in the elastic–plastic behavior of single crystals and inter-crystalline interactions serve to form natural perturbations to the material’s local stability. A hat-shaped sample geometry was used to study shear localization growth. It is an axi-symmetric sample with an upper “hat” portion and a lower “brim” portion with the shear zone located between the hat and brim. The shear zone length is 870–890 μm with deformation imposed through a split-Hopkinson pressure bar system at maximum top-to-bottom velocity in the range of 8–25 m/s. We present experimental results of the deformation response of tantalum and 316L stainless steel samples. The tantalum samples did not form shear bands but the stainless steel sample formed a late stage shear band. We have also modeled these experiments using both conductive and adiabatic continuum models. An anisotropic elasto-viscoplastic constitutive model with damage evolution was used within the finite element code EPIC. A Mie-Gruneisen equation of state and the rate and temperature sensitive MTS flow stress model together with a Gurson flow surface were employed. The models performed well in predicting the experimental data. The numerical results for tantalum suggested a maximum equivalent strain rate on the order of 7 × 104 s−1 in the gage section for an imposed top surface displacement rate of 17.5 m/s. The models also suggested that for an initial temperature of 298 K a temperature in the neighborhood of 900 K was reached within the shear section. The numerical results for stainless steel suggest that melting temperature was reached throughout the shear band shortly after peak load. Due to sample geometry, the stress state in the shear zone was not pure shear; a significant normal stress relative to the shear zone basis line was developed.  相似文献   

19.
The interferometric strain gage consists of two very shallow grooves ruled on a highly polished surface. The grooves are cut with a diamond and are 4×10?5 in. deep and 5×10?3 in. apart. Coherent, monochromatic light from a He?Ne gas laser incident upon these grooves will produce fringe patterns. A fringe pattern with the fringes parallel to the grooves is formed on each side of the impinging beam. The position of these patterns in space is related to the distance between the two grooves. As this distance changes, the fringes shift. Measurement of these fringe shifts enables one to determine the local strain of the specimen. In this paper, the theory of the measurement is developed first. The strain, ∈, is given by ∈=ΔFλ/d o sin α o where ΔF is the average fringe shift of the two patterns, λ is the wavelength of light,d o is the initial distance between grooves, and α o is the angle between the incident light beam and the fringe patterns. A procedure for making static measurements with the interferometric strain gage is presented. The sensitivity for these measurements is 0.5 percent strain per fringe shift, and the maximum strain is 4 percent. The method is evaluated by comparing its results with other accepted means of measuring large plastic strain. These other techniques are: post-yield foil gages, a 2-in. clip gage, and an Instron testing machine. The average percent difference among these techniques is less than 0.4 percent based on a full-scale measurement of 4-percent strain. The interferometric strain gage has the following features: a gage integral with the specimen surface, a very short gage length, relatively easy application, and the ability to measure large strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号