共查询到17条相似文献,搜索用时 122 毫秒
1.
墙—桩—土共同作用的位移影响系数的计算 总被引:2,自引:0,他引:2
本文根据Mindlin方程积分,推导出地下连续墙作为承重结构的墙-桩-土共同作用位移影响系数为计算公式,得到了共同作用柔度矩阵用于地下连续墙作承重结构与桩,筏(箱)基础和地基及上部结构共同作用分析中,可以得出比较满意的结果。 相似文献
2.
当前虽然已有考虑桩筏非线性的设计,但仍无人在此基础上,考虑上部结构。因此考虑上部结构,进一步认识其与桩筏基础非线性共同作用机理,优化桩筏基础设计,具有重要的现实意义。本文以子结构法凝聚上部结构的荷载及刚度,以平面壳体单元模拟筏板,按有限层法模拟桩土之间的弹性相互作用,用广义剪切位移法模拟桩的非线性工作性状,建立了一种考虑上部结构共同作用的桩筏基础非线性分析方法,并编制了分析程序。通过实例分析,探讨了上部结构与桩筏基础非线性共同作用的机理,研究了合理布桩方式,探讨了以差异沉降为目标的优化设计的可能途径。 相似文献
3.
4.
长短桩组合型复合地基优化设计方法研究 总被引:2,自引:0,他引:2
在软土地基上建造建(构)筑物需要进行地基处理,复合地基是一种行之有效的地基处理方式。工程上一般对地基浅层土的承载力要求较高,而深层只需满足下卧层强度要求即可。长短桩复合地基可做到浅层置换率高,深部置换率低,这样就合理地满足了软弱地基不同深度对承载力的要求。同时长短桩复合地基浅部置换率高,加固区复合地基模量大,深部置换率低,复合地基模量较低,正好适应浅部附加应力大,深部附加应力小的应力场,这样对减少软弱地基总沉降有利。本文探讨了长短桩复合地基优化设计方法,提出了长短桩复合地基优化设计数学模型,并利用复合形法求解优化设计数学模型,同时给出了优化设计计算算例,计算结果表明,此优化设计方法不仅可有效地保证长短桩复合地基设计方案技术上可靠,还可获得最佳的经济效益。 相似文献
5.
6.
7.
研究了轴向运动的丝束在填塞卷曲机构内的不稳定性,并得到了临界载荷,同时研究了纺丝参数对丝束弯曲失稳的影响。该理论可用于填塞箱的优化设计或改善产品质量。 相似文献
8.
本文分析了桩基检测中高应变动测技术的理论基础中影响确定桩承载力大小的几个因素,对建立数学模型中桩侧和桩端动阻力与桩的实际承载力大小之间关系进行研究,提出此方法在确定桩的承载力大小过程中的不合理性及误差来源. 相似文献
9.
《应用力学学报》2019,(2)
为了研究海底防沉板-桩复合基础在竖向荷载作用下的受力变形特性,以我国南海某200m水深项目为研究对象,将防沉板-桩复合基础简化为防沉板加角桩的形式,利用FLAC3D数值模拟软件建立了防沉板-桩复合基础数值计算模型。研究了海底防沉板-桩复合基础在竖向荷载作用下海床土体、防沉板、桩身的受力变形特性,并对不同竖向荷载作用下海床土体沉降、防沉板弯矩、桩身位移、桩身弯矩进行了对比分析。研究表明:防沉板的正负弯矩最大值分别出现在防沉板中部和防沉板与桩顶端的连接处,荷载越大,对防沉板的影响越大,桩在防沉板-桩复合基础中的作用越大;荷载越大,桩身产生的水平位移越大,其倾斜程度也越大;竖向荷载较小时,桩身同时出现正负弯矩,竖向荷载较大时,桩身只有正弯矩或只有负弯矩;复合基础的破坏容易发生在防沉板与桩身顶端的连接处。研究内容和计算结果可为防沉板-桩复合基础的设计提供合理可靠的理论依据。 相似文献
10.
高速铁路CFG桩复合地基柔性载荷试验研究 总被引:2,自引:0,他引:2
高速铁路建设的迅速发展及高速铁路对路基沉降的严格要求,CFG桩在高速铁路路基的处理上得到大量运用。但铁路工程对路基的作用原理与工民建工程对地基的作用原理有本质的区别,工民建房屋建筑荷载通过基础对地基施加刚性荷载,而铁路路基直接承受上部路堤的自重和列车运行产生的柔性荷载。高速铁路CFG桩复合地基的设计都是根据工民建行业的设计理论进行,其试验结果必然与实际情况存在偏差。本文着手研究适合于高速铁路复合地基的柔性载荷试验方法,模拟高速铁路柔性加载的特性,通过数值分析对比了刚性荷载和柔性载荷作用下CFG桩复合地基的桩、土应力、位移分布情况;通过现场载荷试验对设计方案进行了验证,研究了高速铁路CFG桩复合地基的承载力特性,结果证明柔性载荷试验是可行的,能合理的模拟高速铁路CFG桩复合地基承载特性,可为柔性基础下CFG桩复合地基的设计提供基础。 相似文献
11.
A modified variational approach is presented to study the behavior of piled raft foundation under vertical loads. The free-body for analysis is a flexible raft isolated from piled raft foundation instead of pile group–soil system or whole pile raft system, which are usually used in other researches. The deflected shape of raft is represented by a function with a set of undetermined coefficients and the interactions between piles and/or the surface loads of soil are evaluated by a simplified approximate analytical solution. The response of the piled raft system is determined by the principle of minimum potential energy. Compared to other rigorous approaches, the present method is computationally efficient and inexpensive. The solutions obtained using the present method of analysis are shown to be in good agreement with other available published results. 相似文献
12.
13.
Dislocation emission from the crack tip in copper under mode II loading is simulated with molecular dynamics method. After
26 partial dislocations are emitted and then relaxed to reach the equilibrium under the constant displacement, the double
pile-ups (including an inverse pile-up and a pile-up) are formed. i.e., the first dislocation is piled up before the obstruction,
and the last dislocation is piled up ahead of the crack tip. These results conform to the TEM observations.
The project supported by the National Natural Science Foundation of China 相似文献
14.
15.
本文对基坑支护设计中常用的设计方法作了评述 ,阐述了弹性抗力法的基本原理 ,对计算时土压力分布模式的选择问题和多支撑板桩墙计算模型位移协调问题给出了明确答案 ,最后通过实例分析阐明了采用弹性抗力法进行基坑支护设计的思路和步骤。 相似文献
16.
In common practice, the pile–soil–raft interaction still remains a challenging problem in the analysis of piled-raft foundations. In the present study, a simplified analytical approach is introduced to analyze a vertically-loaded piled-raft foundation by using a developed homogenization technique called the two-phase approach. In spite of classical and simplified methods in the literature, the proposed method considers the pile–soil interaction. The other major advantage is the ability to predict the axial pile load along the pile length. The problem is solved in the domain of elasticity and simple closed-form solutions are presented for the prediction of the settlement and the pile load sharing of a piled raft as well as the pile's axial force distribution along its length. The applicability of the proposed method is validated by considering case studies and field measurements. A comparison of the results indicates that the method can be utilized safely in a proper, quick, and effective manner with the least computational effort in comparison with sophisticated numerical approaches. The raft settlement can be accurately predicted while the pile load sharing might be over/under estimated. A parametric study is also carried out to investigate the response of piled-raft foundations including the influence of the parameters of the soil and the geometric characteristics of the piles. 相似文献