首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 127 毫秒
1.
采用弹道冲击摆系统开展了爆炸载荷下分层梯度泡沫铝夹芯板的变形/失效模式和抗冲击性能实验研究,并配合激光位移传感器得到试件后面板中心点的挠度-时程响应曲线。研究了炸药当量和芯层组合方式对夹芯板试件变形/失效模式和抗冲击性能的影响。实验结果表明,泡沫铝夹芯板的变形/失效模式主要表现为面板的非弹性大变形,芯层压缩变形、芯层拉伸断裂以及芯层剪切失效。在研究爆炸冲量范围内,非梯度芯层夹芯板的抗冲击性能明显优越于所有分层梯度芯层夹芯板。对于分层梯度夹芯板试件,爆炸冲量较小时芯层组合形式对分层梯度芯层夹芯板的抗冲击性能的影响不大,而爆炸冲量较大时,最大相对密度芯层靠近前面板组合形式的分层梯度夹芯板试件抗冲击性能较好。研究结果可为泡沫金属夹芯结构的优化设计提供参考。  相似文献   

2.
应用一级轻气炮驱动泡沫铝弹丸高速撞击加载技术,对实心钢板以及前/后面板为Q235钢板、芯层分别为铝基复合泡沫和普通泡沫铝的夹层板结构,在脉冲载荷作用下的动态力学响应进行实验研究。结果表明:泡沫铝子弹高速撞击靶板可近似模拟爆炸载荷效果;铝基复合泡沫夹层板的变形分为芯层压缩和整体变形两个阶段;与其他靶板相比,铝基复合泡沫夹层板的抗冲击性能最优。基于实验研究,应用LS-DYNA非线性动力有限元软件,对泡沫铝夹层板的动态响应进行数值模拟。结果表明:泡沫铝子弹的长度和初始速度对子弹与夹层板之间的接触作用力影响显著,并且呈线性关系。泡沫芯层强度对等质量及等厚度夹层板的抗冲击性能均有显著影响,夹层板中心挠度对前、后面板的厚度匹配较为敏感,在临界范围内,若背板厚度大于面板厚度,可减小夹层板的最终挠度。夹层板面板宜采用刚度较低、延性好、拉伸破坏应变较大的金属材料。  相似文献   

3.
应用泡沫金属子弹撞击加载的方式研究了固支泡沫铝夹芯梁和等质量实体梁的塑性动力响应。 采用激光测速装置和位移传感器测量了泡沫子弹的撞击速度和后面板中心点的位移-时间曲线,研究了加载 冲量、面板厚度和芯层厚度对夹芯梁抗冲击性能的影响。给出了泡沫铝夹芯梁的变形与失效模式,实验结果 表明结构响应对夹芯结构配置比较敏感,后面板中心点的残余变形与加载冲量、面板厚度呈线性关系。与等 质量实体梁的比较表明,泡沫铝夹芯梁具有更好的抗冲击能力。实验结果对多孔金属夹芯结构的优化设计具 有一定的参考价值。  相似文献   

4.
李志斌 《爆炸与冲击》2016,36(5):734-738
通过不同形状(平头和半球头)的压头在不同温度下对闭孔泡沫铝材料进行塑性压入实验,研究不同温度下闭孔泡沫铝的压入变形模式及载荷响应特性。并基于闭孔泡沫铝在高温下的准静态塑性压入载荷响应的实验结果,结合多种分析方法,(如量纲分析和有限元计算等),探索既考虑温度影响也包含压入深度影响的预测闭孔泡沫铝平头和半球头压入力学响应的经验公式。结果表明,本文得到的两种压头情况下的经验公式都能够较好地预测闭孔泡沫铝在不同温度下的压入力学响应。  相似文献   

5.
通过开展对泡沫金属子弹撞击加载聚氯乙烯(polyvinyl chloride, PVC)夹芯板的实验,结合三维数字图像相关性(three dimensional digital image correlation, DIC-3D)技术,研究固支夹芯板在撞击加载条件下的动态响应,获得夹芯板受撞击及响应的变形过程,并结合图像分别分析夹芯板整体及三层结构的变形和失效模式;研究子弹冲量与背板最终变形之间的关系和相似冲量下等面密度不同芯层密度的夹芯结构的抗撞击性能。结果表明:夹芯板的破坏和失效主要集中在泡沫金属子弹直接作用区域,背板挠度由中间向固定端逐渐减小,子弹冲量与背板变形近似成线性关系。在等质量的条件下,降低芯层密度、增加芯层厚度可以有效降低背板的变形,实验结果对聚合物夹芯结构的工程优化设计具有一定的参考意义。  相似文献   

6.
泡沫铝夹芯板动态抗侵彻性能的实验研究   总被引:1,自引:0,他引:1  
本文研究了铝板-泡沫铝夹芯板的抗侵彻性能.设计了铝板-泡沫铝夹芯复合材料板,采用SHPB设备,测试了不同子弹冲击速度下纯铝板和泡沫铝夹芯板的动态响应,并研究了其破坏形态.结果表明应力波在纯铝板中的传播与在铝板-泡沫铝夹芯板中的传播有很大差异,由于泡沫铝的粘性效应使应力波在传播过程中有明显的波幅衰减现象.实验结果表明,铝板-泡沫铝夹芯板相对于纯铝板具有不同的破坏形态.由于铝板-泡沫铝夹芯板的特殊结构和性能,使其具有良好的抗侵彻性能.  相似文献   

7.
采用理论分析与数值模拟相结合的方法对多层梯度夹芯板在面外压缩载荷作用下的变形规律与能量吸收性能进行了研究。基于超折叠单元理论,建立了单层、双层及三层梯形夹芯板平均压缩力(MCF)的理论分析模型。在此基础上,建立了多层梯形夹芯板的有限元模型,研究了面板厚度、芯层厚度及芯层底角对三层梯形夹芯板力学性能的影响。研究结果表明:理论预测与数值模拟结果吻合较好;三层梯形夹芯板中面板厚度对结构比吸能(SEA)的影响较小,芯层的厚度和底角影响较大。面板厚度由0.5 mm增加为1.0 mm,比吸能从10.93 J/g增加为10.98 J/g,而面板厚度变为1.5 mm时,比吸能减小为7.54 J/g。随着芯层厚度和底角的增加结构的比吸能增加,当芯层厚度由0.5 mm增加到1.5 mm时,比吸能变为原来的4.69倍;芯层底角为63°时结构的比吸能是底角为30°的4.29倍。  相似文献   

8.
双模量材料是典型的拉压弹性模量不同的材料,在均匀外载荷作用下,双模量面板泡沫铝芯圆形层合板相当于三种不同材料组成的层合板。采用弹性理论建立了双模量面板泡沫铝芯圆形层合板在均布载荷作用下的静力平衡方程,利用该静力平衡方程确定了层合板的中性面位置。在此基础上建立了双模量面板泡沫铝芯圆形层合板的大挠度弯曲微分方程组,求得了层合板中心挠度与均布载荷的关系式。该方法计算结果与有限元计算结果的最大误差仅为3.8%,这说明该方法是可靠的。算例分析表明不考虑面板拉压弹性模量相异时其计算结果与实际情况相差较大,超过了工程上所允许的计算误差5%。所以,在计算双模量面板泡沫铝芯圆形层合板的非线性弯曲时,不宜采用相同弹性模量弹性理论,而应该采用拉压弹性模量不同的弹性理论。  相似文献   

9.
爆炸载荷作用下铝蜂窝夹芯板动力响应研究   总被引:2,自引:0,他引:2  
采用自行设计的冲击摆实验系统对铝蜂窝夹芯板在爆炸载荷作用下的动力响应进行了系统实验研究,给出了面板和铝蜂窝不同区域的不同变形模态,得到了不同炸药当量对铝蜂窝夹芯板动态响应的影响规律,证实了铝蜂窝夹芯板产生较大塑性变形时,比一般的结构具有更好的能量吸收特性.并利用LS-DYNA对其动力响应进行了数值仿真,考察了炸药起爆、接触界面及上表面接触力对夹芯板变形影响的全过程,得到了板中心的最终变形和芯层的变形模式,与实验结果吻合较好.  相似文献   

10.
提出了一种环氧树脂/泡沫铝一体型复合夹层板,通过准静态试验以及与纯泡沫铝、传统蒙皮夹层板的对比研究了其破坏过程、破坏形貌、破坏机理及压缩和弯曲力学性能。分别通过压缩应力-应变曲线和弯曲荷载-挠度曲线分析了复合层厚度对压缩及弯曲力学性能的影响,并与传统夹层板的力学性能进行了比较。结果表明,随着夹层板中环氧树脂/泡沫铝复合层厚度增加,其压缩弹性模量和抗压强度增加,弯曲承载力提高。相比传统蒙皮夹层板,由于表层和芯层之间没有明显界面,大大提高了夹芯板的整体性,在受力过程中不会出现表层剥离等现象。  相似文献   

11.
A combined analytical and experimental investigation of the indentation failure of a composite sandwich panel has been undertaken. Two cases have been studied: a sandwich panel with carbon/epoxy facing and a PVC foam layer supported on a rigid base and indented at the center with a cylindrical indentor; and a sandwich beam with symmetrical facing and core materials as in the sandwich panels. The load-deflection behavior of the loaded facing was monitored during the test. Strains were also measured near the load on both surfaces of the facing using embedded strain gages. A full-field analysis of the in-plane displacements in the foam was conducted using the moiré method. The problem was modeled as an elastic beam resting on an elastic-plastic foundation. Initiation of indentation failure occurs when the foundation yields, while catastrophic failure takes place when the compression facing fractures. The experimental results are in good agreement with the results of the analytical modeling based on the Winkler foundation.  相似文献   

12.
The deformation and failure response of composite sandwich beams and panels under low velocity impact was reviewed and discussed. Sandwich facesheet materials discussed are unidirectional and woven carbon/epoxy, and woven glass/vinylester composite laminates; sandwich core materials investigated include four types of closed cell PVC foams of various densities, and balsa wood. Sandwich beams were tested in an instrumented drop tower system under various energy levels, where load and strain histories and failure modes were recorded for the various types of beams. Peak loads predicted by spring-mass and energy balance models were in satisfactory agreement with experimental measurements. Failure patterns depend strongly on the impact energy levels and core properties. Failure modes observed include core indentation/cracking, facesheet buckling, delamination within the facesheet, and debonding between the facesheet and core. In the case of sandwich panels, it was shown that static and impact loads of the same magnitude produce very similar far-field deformations. The induced damage is localized and is lower for impact loading than for an equivalent static loading. The load history, predicted by a model based on the sinusoidal shape of the impact load pulse, was in agreement with experimental results. A finite element model was implemented to capture the full response of the panel indentation. The investigation of post impact behavior of sandwich structures shows that, although impact damage may not be readily visible, its effects on the residual mechanical properties of the structure can be quite detrimental.  相似文献   

13.
This paper describes the development of a method for determining the fracture toughness of the core/faceplate bond in high-temperature sandwich plates. The tensile deformation behavior of a sandwich element was also determined. The results from the latter experiment were used in a beam on elastic foundation analysis of the fracture specimen. The faceplate/core toughness was determined at 23 and 180°C. The room temperature toughness was slightly higher and, in both cases, the toughness decreased with crack length. The higher toughness was associated with a greater degree of interlaminar failure in the faceplates, as opposed to core-pullout.  相似文献   

14.
以泡沫铝夹芯圆管为研究对象,采用数值模拟研究了横向冲击载荷作用下4种不同约束夹芯圆管的动态响应。研究了夹芯圆管的几何参数、冲击速度和芯层泡沫铝相对密度对夹芯圆管力学行为的影响,对比分析了不同约束条件对泡沫铝夹芯圆管变形模式和吸能性能的影响。结果表明:随着内管直径的减小、冲击速度的增大和芯层泡沫铝相对密度的增大,泡沫铝夹芯圆管的比吸能增大;内管壁厚的增加使无约束和倾斜约束下夹芯圆管的比吸能增大,对侧壁约束和组合约束下夹芯圆管的吸能影响不明显;采用一定的外部约束条件是提高泡沫铝夹芯圆管吸能性能的一种可行的方法。  相似文献   

15.
The mechanical response and fracture of metal sandwich panels subjected to multiple impulsive pressure loads (shocks) were investigated for panels with honeycomb and folded plate core constructions. The structural performance of panels with specific core configurations under multiple impulsive pressure loads is quantified by the maximum transverse deflection of the face sheets and the core crushing strain at mid-span of the panels. A limited set of simulations was carried out to find the optimum core density of a square honeycomb core sandwich panels under two shocks. The panels with a relative core density of 4%–5% are shown to have minimum face sheet deflection for the loading conditions considered here. This was consistent with the findings related to the sandwich panel response subjected to a single intense shock. Comparison of these results showed that optimized sandwich panels outperform solid plates under shock loading. An empirical method for prediction of the deflection and fracture of sandwich panels under two consecutive shocks – based on finding an effective peak over-pressure – was provided. Moreover, a limited number of simulations related to response and fracture of sandwich panels under multiple shocks with different material properties were performed to highlight the role of metal strength and ductility. In this set of simulations, square honeycomb sandwich panels made of four steels representing a relatively wide range of strength, strain hardening and ductility values were studied. For panels clamped at their edge, the observed failure mechanisms are core failure, top face failure and tearing at or close to the clamped edge. Failure diagrams for sandwich panels were constructed which reveal the fracture and failure mechanisms under various shock intensities for panels subjected to up to three consecutive shocks. The results complement previous studies on the behavior and fracture of these panels under high intensity dynamic loading and further highlights the potential of these panels for development of threat-resistant structural systems.  相似文献   

16.
Analysis and test results for the compliance of the sandwich plate twist test are presented. The analysis utilizes classical laminated plate theory (CLPT) and finite element analysis (FEA). It is shown that CLPT greatly underestimates the plate compliance, except when very stiff cores and compliant face sheets are used, as a result of transverse core shear deformation, not accounted for in this theory. Parametric studies are conducted using FEA to examine the influence of transverse shear moduli of the core and specimen dimensions on the plate compliance. The influences of indentation at load introduction and support locations, and overhang (oversized panel) are also examined. A test fixture is designed where two diagonally opposite corners of the panel are loaded, while the other two corners are supported to provide twisting deformation of the panel. Tests were conducted on square sandwich panels consisting of aluminum face sheets over various PVC foam cores. CLPT was found to greatly underestimate the experimental plate compliance. Finite element predictions of the plate compliance were in much closer agreement with the experimental data.  相似文献   

17.
The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young’s modulus is represented by a polynomial in the thickness coordinate, but the Poisson’s ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel—the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of the beam with graded core increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load are reduced considerably due to grading of the core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.  相似文献   

18.
陈洋  汤杰  易果  吴亮  蒋刚 《爆炸与冲击》2023,43(3):149-159
针对某光学舱所采用的泡沫铝夹层防护结构在破片冲击下的抗冲击性能问题,采用Monte-Carlo方法创建了泡沫铝结构的二维细观模型,在常规态型近场动力学理论中引入了Mises屈服准则和线性各向同性强化模型,建立了近场动力学塑性本构的数值计算框架。基于近场动力学计算程序模拟了低速冲击作用下泡沫铝夹层结构的塑性变形以及有机玻璃背板的裂纹扩展形态,分析了泡沫铝芯材孔隙率对该夹层结构抗冲击性能和损伤模式的影响规律。结果表明:泡沫铝夹层结构良好的塑性变形能力是其发挥缓冲与防护作用的主要因素,并且在一定范围内,泡沫铝芯材孔隙率越高,则夹层结构具有更好的抗冲击性能;当泡沫铝孔隙率从0.4提升到0.7时,泡沫铝对冲击物的动能吸收率从90%提高到99%;模拟结果与实验结果具有较好的一致性,验证了模拟结果的准确性和分析结论的有效性。通过数值模拟,预测了有机玻璃背板的裂纹扩展形态,发现提高泡沫铝的孔隙率能获得更好的防护效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号