首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A novel experimental technique is developed for time-resolved detection and tracking of damage in the forms of delamination and matrix cracking in layered materials such as composite laminates. The technique is non-contact in nature and uses dual or quadruple laser interferometers for high temporal resolution. Simultaneous measurements of differential displacement and velocity at individual locations are obtained to analyze the initiation and progression of interfacial fracture and/or matrix cracking/delamination in a polymer matrix composite laminate system reinforced by graphite fibers. The measurements at multiple locations allow the speeds at which interfacial crack front (mode-I) or matrix cracking/delamination front (mode-II dominated) propagates to be determined. Experiments carried out use three-point bend configurations. Impact loading is achieved using a modified Kolsky bar apparatus with a complete set of diagnostics for load, deformation, deformation rate, and input energy measurement. This technique is used to characterize the full process of damage initiation and growth. The experiments also focused on the quantification of the speed at which delamination or damage propagates under primarily mode-I and mode-II conditions. The results show that the speed of delamination (mode-I) or the speed of matrix cracking/delamination (primarily mode-II) increases linearly with impact velocity. Furthermore, speeds of matrix failure/delamination under primarily mode-II conditions are much higher than the speeds of mode-I crack induced delamination under mode-I conditions.  相似文献   

2.
An antisymmetric test fixture is employed to investigate interlaminar fracture behavior in graphite/epoxy composite material under mixed-mode deformations. Finite correction factors for the graphite/epoxy fracture specimen with various crack lengths are used to determine the interlaminar fracture toughness by finite-element stress analysis. Interlaminar fracture characteristics of graphite/epoxy composite material under mode-I, mode-II and mixed-mode deformations are evaluated experimentally. A mixed-mode fracture criterion is also investigated to obtain information on mixedmode interlaminar fracture behavior of graphite/epoxy composite material.Paper was presented at the 1988 SEM Spring Conference on Experimental Mechanics held in Portland, OR on June 5–10.  相似文献   

3.
Transient mixed-mode elastodynamic crack growth along arbitrary smoothly varying paths in functionally graded materials (FGMs) is considered. The property gradation in FGMs is considered by varying shear modulus and mass density exponentially along the gradation direction. Crack tip out of plane displacement fields and their gradients are developed for propagating curved cracks of arbitrary velocity using asymptotic approach. The mode-mixity due to the inclination of curved crack with respect to property gradient is accommodated in the analysis through superposition of the opening and shear modes. The expansion of the displacement fields and their gradients around the crack-tip are derived in powers of radial coordinates with the coefficients of expansion depending on the instantaneous value of the local curvature of the crack path, time derivatives of crack-tip speed, and time derivative of mode-I and mode-II stress intensity factors. The effect of the transient terms instantaneous local curvature, crack-tip speed, time derivatives of crack-tip speed, and time derivative of mode-I and mode-II stress intensity factors on the contours of constant out of plane displacement are also discussed.  相似文献   

4.
The traditional compliance-based criterion of the crack stability in fracture mechanics states that the stability of the crack propagation in the different specimens under different fracture modes is determined by the derivative of the energy release rate with respect to the crack length. In this work the compliance-based criterion is verified by experiments performed on fracture mechanical systems. The large number of experiments carried out on different (mode-I, mode-II, mixed-mode I/II and mixed-mode II/III) specimens shows that the stability of the crack propagation depends on the derivative of the critical displacement (the displacement at the point of fracture initiation) with respect to the crack length. The experimentally established limits of crack stability were compared to the limits of the traditional criterion and it is shown that in each case they lead to approximately the same restriction considering the stable zone of crack propagation.  相似文献   

5.
In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.  相似文献   

6.
In this paper, a modified shear-lag model is developed to calculate the surface crack density in thermal barrier coatings(TBCs). The mechanical properties of TBCs are also measured to quantitatively assess their surface crack density. Acoustic emission(AE) and digital image correlation methods are applied to monitor the surface cracking in TBCs under tensile loading. The results show that the calculated surface crack density from the modified model is in agreement with that obtained from experiments. The surface cracking process of TBCs can be discriminated by their AE characteristics and strain evolution. Based on the correlation of energy released from cracking and its corresponding AE signals, a linear relationship is built up between the surface crack density and AE parameters, with the slope being dependent on the mechanical properties of TBCs.  相似文献   

7.
The Coherent Gradient Sensor (CGS) is extended to the optical differentiation of specular, diffracted wave fronts leading to the combined measurement of in- and out-of-plane displacement field gradients. A derivation of the underlying optical interference principles is presented along with an analysis of the effective instrument sensitivity. In order to demonstrate the capabilities of the technique, experimental measurements of crack-tip deformation fields were conducted under various loading conditions corresponding to mode-I, mode-II, and mixed mode near-tip crack fields. The experimental procedures and results of these tests are presented as validation of the technique.  相似文献   

8.
Transient mixed-mode elastodynamic crack growth along arbitrary smoothly varying paths is considered. Asymptotically, the crack tip stress field is square root singular with the angular variation of the singular term depending weakly on the instantaneous values of the crack tip speed and on the mode-I and mode-II stress intensity factors. However, for a material particle at a small distance away from the moving crack tip, the local stress field will depend not only on the instantaneous values of the crack tip speed and stress intensity factors, but also on the past history of these time dependent quantities. In addition, for cracks propagating along curved paths the stress field is also expected to depend on the nature of the curved crack path. Here, a representation of the crack tip fields in the form of an expansion about the crack tip is obtained in powers of radial distance from the tip. The higher order coefficients of this expansion are found to depend on the time derivative of crack tip speed, the time derivatives of the two stress intensity factors as well as on the instantaneous value of the local curvature of the crack path. It is also demonstrated that even if cracks follow a curved path dictated by the criterion K 11 d =0, the stress field may still retain higher order asymmetric components related to non-zero local curvature of the crack path.  相似文献   

9.
10.
We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed photography and dynamic photoelasticity are used to observe, in real-time, the failure mode transition mechanism at the interfaces. Simple dynamic fracture mechanics concepts used in conjunction with a postulated energy criterion are applied to examine the crack deflection/penetration behavior and, for the case of interfacial deflection, to predict the crack tip speed of the deflected crack. It is found that if the interfacial angle and strength are such as to trap an incident dynamic mode-I crack within the interface, a failure mode transition occurs. This transition is characterized by a distinct, observable and predicted speed jump as well as a dramatic crack speed increase as the crack transitions from a purely mode-I crack to an unstable mixed-mode interfacial crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号