首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanofluids are obtained by dispersing homogeneously nanoparticles into a base fluid. Nanofluids often exhibit higher heat transfer rate in comparison with the base fluid. In the present study, forced convection heat transfer under laminar flow conditions was investigated experimentally for three types of non-Newtonian nanofluids in a circular tube with constant wall temperature. CMC solution was used as the base fluid and γ-Al2O3, TiO2 and CuO nanoparticles were homogeneously dispersed to create nanodispersions of different concentrations. Nanofluids as well as the base fluid show shear thinning (pseudoplastic) rheological behavior. Results show that the presence of nanoparticles increases the convective heat transfer of the nanodispersions in comparison with the base fluid. The convective heat transfer enhancement is more significant when both the Peclet number and the nanoparticle concentration are increased. The increase in convective heat transfer is higher than the increase caused by the augmentation of the effective thermal conductivity.  相似文献   

2.
In this study, nanofluids with different TiO2 nanoparticle concentrations were synthesized and measured in different constant heat fluxes for their heat transfer behavior upon flowing through a vertical pipe. Addition of nanoparticles into the base fluid enhances the forced convective heat transfer coefficient. The results show that the enhancement of the convective heat transfer coefficient in the mixture consisting of ethylene glycol and distilled water is more than distilled water as a base fluid.  相似文献   

3.
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25–2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500–4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.  相似文献   

4.
The convective boiling characteristics of dilute dispersions of CuO nanoparticles in water/ethylene glycol as a base fluid were studied at different operating conditions of (heat fluxes up to 174 kW m?2, mass fluxes range of 353–1,059 kg m?2 s?1 and sub-cooling level of 343, 353 and 363 K) inside the annular duct. The convective boiling heat transfer coefficients of nanofluids in different concentrations (vol%) of nanoparticles (0.5, 1, and 1.5) were also experimentally quantified. Results demonstrated the significant augmentation of heat transfer coefficient inside the region with forced convection dominant mechanism and deterioration of heat transfer coefficient in region with nucleate boiling dominant heat transfer mechanism. Due to the scale formation around the heating section, fouling resistance was also experimentally measured. Experimental data showed that with increasing the heat and mass fluxes, the heat transfer coefficient and fouling resistance dramatically increase and rate of bubble formation clearly increases. Obtained results were then compared to some well-known correlations. Results of these comparisons demonstrated that experimental results represent the good agreement with those of obtained by the correlations. Consequently, Chen correlation is recommended for estimating the convective flow boiling heat transfer coefficient of dilute CuO-water/ethylene glycol based nanofluids.  相似文献   

5.
Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. We also evaluated the effects of particle concentration and operating temperature on the forced convective heat transfer coefficient of the nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the base fluid, ranging from 2% to 50%. Moreover, the results indicate that with increasing nanoparticles concentration and nanofluid temperature, the convective heat transfer coefficient of nanofluid increases. Our experiments revealed that in lower temperatures, the theoretical and experimental findings coincide; however, in higher temperatures and with increased concentrations of the nanoparticles in ethylene glycol, the two set of results tend to have growing discrepancies.  相似文献   

6.
A numerical study of laminar forced convective flows of three different nanofluids through a horizontal circular tube with a constant heat flux condition has been performed. The effect of Al2O3 volume concentration 0 ≤ φ ≤ 0.09 in the pure water, water-ethylene glycol mixture and pure ethylene glycol as base fluids, and Reynolds number of 100 ≤ Re ≤ 2,000 for different power inputs in the range of 10 ≤ Q(W) ≤ 400 have been investigated. In this study, all of the nanofluid properties are temperature and nanoparticle volume concentration dependent. The governing equations have been solved using finite volume approach with the SIMPLER algorithm. The results indicate an increase in the averaged heat transfer coefficient with increasing the mass of ethylene glycol in the water base fluid, solid concentration and Reynolds number. From the investigations it can be inferred that, the pressure drop and pumping power in the nanofluids at low solid volumetric concentration (φ < 3%) is approximately the same as in the pure base fluid in the various Reynolds numbers, but the higher solid nanoparticle volume concentration causes a penalty drop in the pressure. Moreover, this study shows it is possible to achieve a higher heat transfer rate with lower wall shear stress with the use of proper nanofluids.  相似文献   

7.
This work describes the numerical simulation of natural convection heat transfer of Cu–water nanofluids in a square enclosure for Rayleigh numbers varying from 103 up to 105. Two different numerical approaches were used: the finite volume method and the finite element method. The nanofluids were assumed to be single-phase fluids with modified thermal properties obtained from experimental results and theoretical models. The results showed that the Nusselt number for nanofluids was basically the same as that obtained for the base fluid. Therefore, the enhancement observed in the heat transfer coefficient was significant due to the augmentation in the thermal conductivity.  相似文献   

8.
Experimental measurements were carried out on the boiling heat transfer characteristics of γ-Al2O3/water and SnO2/water Newtonian nanofluids. Nanofluids are liquid suspensions containing nanoparticles with sizes smaller than 100 nm. In this research, suspensions with different concentrations of γ-Al2O3 and SnO2 nanoparticles in water were studied under nucleate pool boiling heat transfer conditions. Results show that nanofluids possess noticeably higher boiling heat transfer coefficients than the base fluid. The boiling heat transfer coefficients depend on the type and concentration of nanoparticles.  相似文献   

9.
The heat transfer and fluid flow behavior of water based Al2O3 nanofluids are numerically investigated inside a two-sided lid-driven differentially heated rectangular cavity. Physical properties which have major effects on the heat transfer of nanofluids such as viscosity and thermal conductivity are experimentally investigated and correlated and subsequently used as input data in the numerical simulation. Transport equations are numerically solved with finite volume approach using SIMPLEC algorithm. It was found that not only the thermal conductivity but also the viscosity of nanofluids has a key role in the heat transfer of nanofluids. The results show that at low Reynolds number, increasing the volume fraction of nanoparticles increases the viscosity and has a deteriorating effect on the heat transfer of nanofluids. At high Reynolds number, the increase in the viscosity is compensated by force convection and the increase in the volume fraction of nanoparticles which results in an increase in heat transfer is in coincidence with experimental results.  相似文献   

10.
Supercritical water fluidized bed (SCWFB) is a promising reactor to gasify biomass or coal. Its optimization design is closely related to wall-to-bed heat transfer, where particle convective heat transfer plays an important role. This paper evaluates the particle convective heat transfer coefficient (hpc) at the wall in SCWFB using the single particle model. The critical parameters in the single particle model which is difficult to get experimentally are obtained by the computational fluid dynamics-discrete element method (CFD-DEM). The contact statistics related to particle-to-wall heat transfer, such as contact number and contact distance, are also presented. The results show that particle residence time (τ), as the key parameter to evaluate hpc, is found to decrease with rising velocity, while increase with larger thermal boundary layer thickness. τ follows a gamma function initially adopted in the gas–solid fluidized bed, making it possible to evaluate hpc in SCWFB by a simplified single particle model. The theoretical predicted hpc tends to increase with rising thermal gradient thickness at a lower velocity (1.5 Umf), while first decreases and then increases at higher velocity (1.75 and 2 Umf). hpc occupies 30%–57% of the overall wall-to-bed heat transfer coefficient for a particle diameter of 0.25 mm. The results are helpful to predict the overall wall-to-bed heat transfer coefficient in SCWFB combined with a reasonable fluid convective heat transfer model from a theoretical perspective.  相似文献   

11.
This work is focused on numerical simulations of natural convection heat transfer in Al2O3-water nanofluids using computational fluid dynamics approach. Fluent v6.3 is used to simulate water based nanofluid considering it as a single phase. Thermo-physical properties of the nanofluids are considered in terms of volume fraction and size of nanoparticles, size of base fluid molecule and temperature. The numerical values of effective thermal conductivity have also been compared with the experimental values available in the literature. The numerical result simulated shows decrease in heat transfer with increase in particle volume fraction. Computed result shows similar trend in increase of Nusselt number with Relayigh number as depicted by experimental results. Streamlines and temperature profiles are plotted to demonstrate the effect.  相似文献   

12.
The objective of the present study is to analyze the heat transfer correlations of supercritical CO2 cooled in horizontal circular tubes. In the paper, heat transfer correlations are first reviewed and compared with the experimental data at different heat fluxes. The results show that most of the previous correlations agree well with the experimental data under lower heat flux, but fail to predict the heat transfer coefficient well when the heat flux is as high as 33 kW/m2. The study of buoyancy effect on convective heat transfer shows that buoyancy effect significantly affects the heat transfer with the increase of heat flux, and both free and forced convections operate in the turbulence flow during supercritical CO2 cooling process. The influencing factors on heat transfer coefficient are summarized and the new correlation can be developed with the four dimensionless numbers.  相似文献   

13.
This work reports an experimental study of convective heat transfer of aqueous alumina nanofluids in a horizontal mini-channel under laminar flow condition 40 < Re < 1,000. The variation of local heat transfer coefficients, in both entrance and developed flow regimes, was obtained as a function of axial distance. The heat transfer coefficient of nanofluids was found to be dependent on not only nanoparticle concentration but also mass flow rate. Different to the behavior in conventional-sized channels, the major heat transfer coefficient enhancement is shown in the fully developed regime in the minichannel where up to 40% increase is observed. Discussions of the results suggest that apart from the need of a careful assessment of different thermo-physical properties of nanofluids, i.e., viscosity, specific heat and thermal conductivity, the heterogeneous nature of nanoparticle flow should be considered especially under high flow rate conditions.  相似文献   

14.
The convective heat transfer of SiO2/water colloidal suspensions (5-34 wt.%) is investigated experimentally in a flow loop with a horizontal tube test section whose wall temperature is imposed. Experiments were performed at different inlet temperatures (20, 50, 70 °C) in cooling and/or heating conditions at various flow rates (200 < Re < 10,000). The Reynolds and Nusselt numbers were deduced by using thermal conductivity and viscosity values measured with the same temperature conditions as those in the tests. Results indicate that the heat transfer coefficient values are increased from 10% to 60% compared to those of pure water. They also show that the general trend of standard correlations is respected. The problem of suspension stability at the highest temperatures is discussed. In order to evaluate the benefits provided by the enhanced properties of the nanofluids studied, an energetic performance evaluation criterion (PEC) is defined. This PEC decreases as the nanoparticle concentration is increased. This process is also discussed in this paper.  相似文献   

15.
Nanofluid is an innovative heat transfer fluid with superior potential for enhancing the heat transfer performance of conventional fluids. Many attempts have been made to investigate its thermal conductivity and viscosity, which are important thermophysical properties. No definitive agreements have emerged, however, about these properties. This article reports the thermal conductivity and dynamic viscosity of nanofluids experimentally. TiO2 nanoparticles dispersed in water with volume concentration of 0.2–2 vol.% are used in the present study. A transient hot-wire apparatus is used for measuring the thermal conductivity of nanofluids whereas the Bohlin rotational rheometer (Malvern Instrument) is used to measure the viscosity of nanofluids. The data are collected for temperatures ranging from 15 °C to 35 °C. The results show that the measured viscosity and thermal conductivity of nanofluids increased as the particle concentrations increased and are higher than the values of the base liquids. Furthermore, thermal conductivity of nanofluids increased with increasing nanofluid temperatures and, conversely, the viscosity of nanofluids decreased with increasing temperature of nanofluids. Moreover, the measured thermal conductivity and viscosity of nanofluids are quite different from the predicted values from the existing correlations and the data reported by other researchers. Finally, new thermophysical correlations are proposed for predicting the thermal conductivity and viscosity of nanofluids.  相似文献   

16.
The behavior of nanofluids containing cylindrical nanoparticles are investigated numerically inside a two‐sided lid‐driven differentially heated square cavity to gain insight into the convective recirculation and flow processes induced by a nanofluid. The physical properties of the base fluid such as viscosity, thermal conductivity and thermal expansion coefficient are, respectively, assumed to be temperature independent (taking the mean temperature of the left and right walls) and temperature dependent. A model is developed to analyze the behavior of nanofluids taking into account the nanoparticle volume fraction whereas the transport equations are solved numerically with finite volume approach using SIMPLEC algorithm. The left and right moving walls are maintained at different constant temperatures while the upper and bottom walls are thermally insulated. The directions of the moving walls were considered in a way that the force and natural convections aid each other. The governing parameter Richardson number was 0.1<Ri<50.0 but due to space constraints only the results for 0.1<Ri<10.0 from fluid flow are presented. It was found that the temperature dependency of physical properties at different Richardson numbers and nanoparticle volume fractions affects the fluid flow and heat transfer in the cavities. Finally, comparisons between the behaviors of the average Nusselt number at the left wall for two cases are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analysis, Al2O3/water nanofluid is assumed as a homogenous single-phase fluid. For the effective thermal conductivity of nanofluids, Hamilton–Crosser model is used together with a model for Brownian motion in the analysis which takes the effects of temperature and the particle diameter into account. Temperature distributions across the tube for a step jump of wall temperature and also wall heat flux are obtained for various times during the transient calculations at a given location for a constant value of Peclet number and a particle diameter. Variations of thermal conductivity in turn, heat transfer enhancement is obtained at various times as a function of nanoparticle volume fractions, at a given nanoparticle diameter and Peclet number. The results are given under transient and steady-state conditions; steady-state conditions are obtained at larger times and enhancements are found by comparison to the base fluid heat transfer coefficient under the same conditions.  相似文献   

18.
A numerical study has been performed to analyze nanofluids convective heat transfer. Laminar α-Al2O3-water nanofluid flows in an entrance region of a horizontal circular tube with constant surface temperature. Numerical analysis has been carried out using two different single-phase models (homogenous and dispersion) and two-phase models (Eulerian–Lagrangian and mixture). A new model is developed to consider the nanoparticles dispersion. The transport equations for the tube with constant surface temperature were solved numerically using a control volume approach. The effects of nanoparticles volume fraction (0.5, 1 %) and Reynolds number (650 ≤ Re ≤ 2300) on nanofluid convective heat transfer coefficient were studied. The results are compared with the experimental data and it is shown that the homogenous single-phase model is underestimated and the mixture model is overestimated. Although the Eulerian–Lagrangian model gives a reasonable prediction for the thermal behavior of nanofluids, the dispersion single-phase model gives more accurate prediction despite its simplicity.  相似文献   

19.
The present study experimentally investigates the effect of multi wall carbon nanotubes (MWCNT) suspensions on the convective heat transfer coefficients. The MWCNT suspensions used in this study were prepared by dispersing MWCNTs in deionized water 0.25 wt% arab gum solution. The heat transfer characteristics were measured for thermally developing laminar flow in a finite length horizontal circular pipe under isothermal wall conditions. The study was conducted over a range of Reynolds number of 300–2,300, based on 0.8 mm tube diameter. Results indicate enhancements of the convective heat transfer coefficient as a function of Reynolds number and volume fractions. An average enhancement of heat transfer coefficient of 50 % was observed over the base fluid. An overall increase of pumping force varying from 20 to 30 % over the flowing range is observed. The results suggest an optimum MWCNT volume fraction point of 0.1 % which gives the best heat transfer enhancement.  相似文献   

20.
This study explores the effects of electro-magneto-hydrodynamics,Hall currents,and convective and slip boundary conditions on the peristaltic propulsion of nanofluids(considered as couple stress nanofluids)through porous symmetric microchannels.The phenomena of energy and mass transfer are considered under thermal radiation and heat source/sink.The governing equations are modeled and non-dimensionalized under appropriate dimensionless quantities.The resulting system is solved numerically with MATHEMATICA(with an in-built function,namely the Runge-Kutta scheme).Graphical results are presented for various fluid flow quantities,such as the velocity,the nanoparticle temperature,the nanoparticle concentration,the skin friction,the nanoparticle heat transfer coefficient,the nanoparticle concentration coefficient,and the trapping phenomena.The results indicate that the nanoparticle heat transfer coefficient is enhanced for the larger values of thermophoresis parameters.Furthermore,an intriguing phenomenon is observed in trapping:the trapped bolus is expanded with an increase in the Hartmann number.However,the bolus size decreases with the increasing values of both the Darcy number and the electroosmotic parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号