首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 In most studies concerning laminar natural convection along a vertical isothermal cylinder a linear relationship between fluid density and temperature has been used and kinematic viscosity and thermal diffusivity have been considered constant calculated at ambient temperature. However, it is known that the density–temperature relationship for water is non-linear at low temperatures and kinematic viscosity and thermal diffusivity are functions of temperature. In this study the problem of laminar natural convection of pure and saline water along a vertical isothermal cylinder has been investigated in the temperature range between 20 and 0 C taking into account the temperature dependence of ν, α and ρ. The results are obtained with the numerical solution of the boundary layer equations. The variation of ν, α and ρ with temperature has a strong influence on free convection characteristics. Received on 17 May 1999  相似文献   

2.
3.
This paper describes a numerical method for the study of combined natural convection and radiation in a rectangular, two-dimensional cavity containing a non-participating (i.e. transparent) fluid. One wall of the cavity is isothermal, being heated either by solar radiation or independently. The opposite wall is partially transparent, permitting radiation exchanges between the cavity and its surroundings and/or the Sun; that wall also exchanges heat by convection from its external surface to the surroundings. The other two walls are adiabatic: convection and radiation there are balanced, so that there is no heat transfer through those walls. The equations of motion and energy are solved by finite difference methods. Coupled to these equations are the radiative flux boundary conditions which are used to determine the temperature distribution along the non-isothermal walls. A two-band radiation model has been employed. Results are presented for a square cavity with a vertical hot wall at 150 °C, the ambient at 20 °C and 104 ? Ra ? 3 × 105, in the absence of direct insolation. The effects on the flow and heat transfer in the cavity of radiation and external convection have been examined. More extensive results will be presented in subsequent papers.  相似文献   

4.
This paper reports on the results of a numerical study on the equilibrium state of the convection of water in the presence of ice in an inclined rectangular cavity filled with a porous medium. One side of the cavity is maintained at a temperature higher than the fusion temperature while the opposite side is cooled to a temperature lower than the fusion temperature. The two remaining sides are insulated. Results are analysed in terms of the density inversion parameter, the tilt angle, and the cooling temperature. It appears that the phenomenon of density inversion plays an important role in the equilibrium of an ice-water system when the heating temperature is below 20°. In a vertical cavity, the density inversion causes the formation of two counterrotating vortices leading to a water volume which is wider at the bottom than at the top. When the cavity is inclined, there exist two branches of solutions which exhibit the bottom heating and the side heating characteristics, respectively (the Bénard and side heating branches). Due to the inversion of density, the solution on the Bénard branch may fail to converge to a steady state at small tilt angles and exhibits an oscillating behavior. On the side heating branch, a maximum heat transfer rate is obtained at a tilt angle of about 70° but the water volume was found to depend very weakly on the inclination of the cavity. Under the effect of subcooling, the interplay between conduction in the solid phase and convection in the liquid leads to an equilibrium ice-water interface which is most distorted at some intermediate cooling temperature.  相似文献   

5.
The present study concerns an air-filled differentially heated cavity of 1 m × 0.32 m × 1 m (width × depth × height) subject to a temperature difference of 15 K and is motivated by the need to understand the persistent discrepancy observed between numerical and experimental results on thermal stratification in the cavity core. An improved experiment with enhanced metrology was set up and experimental data have been obtained along with the characteristics of the surfaces and materials used. Experimental temperature distributions on the passive walls have been introduced in numerical simulations in order to provide a faithful prediction of experimental data. By means of DNS using spectral methods, heat conduction in the insulating material is first coupled with natural convection in the cavity. As heat conduction influences only the temperature distribution on the top and bottom surfaces and in the near wall regions, surface radiation is added to the coupling of natural convection with heat conduction. The temperature distribution in the cavity is strongly affected by the polycarbonate front and rear walls of the cavity, which are almost black surfaces for low temperature radiation, and also other low emissivity walls. The thermal stratification is considerably weakened by surface radiation. Good agreement between numerical simulations and experiments is observed on both time-averaged fields and turbulent statistics. Treating the full conduction–convection–radiation coupling allowed to confirm that experimental wall temperatures resulted from the coupled phenomena and this is another way to predict correctly the experimental results in the cavity.  相似文献   

6.
Experiments have been undertaken to investigate the natural convection of air in a tall differentially heated rectangular cavity (2.18 m high by 0.076 m wide by 0.52 m in depth). They were performed with temperature differentials between the vertical plates of 19.6°C and 39.9°C, giving Rayleigh numbers based on the width of 0.86×106 and 1.43×106. Under these conditions the flow in the core of the cavity is fully turbulent and property variations with temperature are comparatively small. A previously used experimental rig has been modified, by fitting partially conducting top and bottom walls and outer guard channels, to provide boundary conditions which avoid the inadequately defined sharp changes in temperature gradient and other problems associated with insufficient insulation on nominally adiabatic walls. Mean and turbulent temperature and velocity variations within the cavity have been measured, together with heat fluxes and turbulent shear stresses. The temperature and flow fields were found to be closely two-dimensional, except close to the front and back walls, and anti-symmetric across the diagonal of the cavity. The partially conducting roof and floor provide locally unstable thermal stratification in the wall jet flows there, which enhances the turbulence as the flow moves towards the temperature controlled plates. The results provide a greatly improved benchmark for the testing of turbulence models in this low turbulence Reynolds number flow.  相似文献   

7.
This paper describes results on the effects of wall conduction and radiation heat exchange among surfaces on laminar natural convection heat transfer in a two-dimensional rectangular cavity modelling a cellular structure. Parametric heat transfer calculations have been performed, and numerical results are presented in graphical and tabular form. Local and average Nusselt numbers along the cavity walls are reported for a range of parameters of physical interest. The findings suggest that the local or the average Nusselt number is one of many parameters that control conjugate heat transfer problems. The results indicate that natural convection heat transfer in the cavity is reduced by heat conduction in the walls and radiation exchange among surfaces. The results obtaibed for the total heat transfer rate through the system using the two-dimensional model are compared with those based on a one-dimensional model.  相似文献   

8.
ntroductionLetΩ R2 beaboundeddomain .Weconsiderthefollowingnon_stationarynaturalconvectionproblem :Problem (Ⅰ ) Findu =(u1,u2 ) ,p ,andTsuchthat,foranyt1>0 ,ut- μΔu +(u· )u + p=λjT   ((x ,y ,t) ∈Ω× (0 ,t1) ) ,divu =0          ((x ,y,t) ∈Ω× (0 ,t1) ) ,Tt-ΔT +λu· T =0   ((x,y,t) ∈Ω× (0 ,t1) ) ,u =0 ,T =0       ((x,y,t)∈ Ω× (0 ,t1) ) ,u(x ,y ,0 ) =0 , T(x,y,0 ) =f(x,y)   ((x,y) ∈Ω) ,whereuisthefluidvelocityvectorfield ,pthepressurefield ,Tthet…  相似文献   

9.
The natural convection heat transfer characteristics and mechanism for copper micro-wires in water and air were investigated experimentally and numerically. The wires with diameters of 39.9, 65.8 and 119.1 μm were placed horizontally in water inside of a sealed tube and in air of a large room, respectively. Using Joule heating, the heat transfer coefficients and Nusselt numbers of natural convection for micro-wires in ultra pure water and air were obtained. A three dimensional incompressible numerical model was used to investigate the natural convection, and the prediction with this model was in reasonable accordance with the experimental results. With the decrease of micro-wire diameter, the heat transfer coefficient of natural convection on the surface of micro-wire becomes larger, while the Nu number of natural convection decreases in water and air. Besides, the change rate of Nu number in water decreases apparently with the increase of heat flux and the decrease of wire diameter, which is larger than that in air. The thickness of boundary layer on the wall of micro-wire becomes thinner with the decrease of diameter in both water and air, but the ratio of boundary layer thickness in water to the diameter increases. However, there is almost no change of this ratio for natural convection in air. As a result, the proportion of conduction in total heat transfer of natural convection in water increases, while the convective heat transfer decreases. The velocity distribution, temperature field and the boundary layer in the natural convection were compared with those of tube with conventional dimension. It was found that the boundary layer around the micro-wire is an oval-shaped film on the surface, which was different from that around the conventional tube. This apparently reduces the convection strength in the natural convection, thus the heat transfer presents a conduction characteristic.  相似文献   

10.
The present work reports a numerical simulation of mixed convection in an inclined square cavity. The vertical sidewalls are assumed to have a nonuniform temperature distribution. The finite volume method is used to solve dimensionless governing equations. Simulations are performed for different Richardson numbers, amplitude ratios, phase deviations, and cavity inclination angles. The results are presented graphically. The mean heat transfer significantly increases in the buoyancy-dominated mode on increasing cavity inclination angle if both walls have identical heating and cooling zones.  相似文献   

11.
In this work the numerical and experimental results of heat transfer in a vertical tall closed cavity are presented. The cavity has an aspect ratio of 20, one of the vertical walls receive a constant and uniform heat flux, while the opposite wall is kept at a constant temperature. The remaining walls are assumed adiabatic. The cavity is full of air. The computational fluid dynamics software Fluent 6.3 was used for the simulation and an experimental prototype was built to obtain the heat transfer coefficients. The air temperature and the fluid velocity values are higher when emissivity (ε) is 0.03 (almost pure natural convection). The experimental total heat transfer coefficient increases between 119.9 and 159.9 % when the emissivity of the walls changes from 0.03 to 0.95.  相似文献   

12.
In previous work the authors showed a sharp entry to have a definite effect on laminar forced convection to water in a vertical circular tube. The study has been extended to situations of strong aiding natural convection, and new experimental data and numerical predictions are reported. The expected entry effect is confirmed, but it is found to be less marked in a strong combined convection field than in the previous forced convection study. The experimental data also include evidence of transition from laminar flow, and a possible criterion of transition is investigated, based on the axial location of minimum local Nusselt number. This is experimental and predictive data for this criterion are compared with the experimental correlation of Lawrence and Chato based on a criterion of temperature fluctuations  相似文献   

13.
We consider unsteady laminar natural convection flow of water subject to density inversion in a rectangular cavity formed by isothermal vertical walls with internal heat generation. The top and bottom horizontal walls are considered to be adiabatic, whereas the temperature of the left vertical wall is assumed to be greater than that of the right vertical wall. The equations are non-dimensionalized and are solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique. The effects of both heat generation and variations in the aspect ratio on the streamlines, isotherms and the rate of heat transfer from the walls of the enclosure are presented. Investigations are performed for water taking Prandtl number to be Pr=11.58 and the Rayleigh number to be Ra=105.  相似文献   

14.
Laminar thermosolutal convection in cavities with uniform, constant temperature and mass fraction profiles at the vertical side is studied numerically. The study is conducted in the case where an inert carrier gas (species “1”) present in the cavity is not soluble in species “2”, and do not diffuse into the walls. A mass flux of species “2” into the cavity occurs at the hot vertical wall and a mass flux out of the cavity occurs at the opposite cold wall. The weakly compressible model proposed in this work was used to investigate the flow fields, and heat and mass transfer in cavities filled with binary mixtures of ideal gases. The dimensionless form of the seven governing equations for constant thermophysical properties, except density, show that the problem formulation involves ten dimensionless parameters. The results were validated against numerical results published in the literature for purely thermal convection, and thermodynamic predictions for transient thermosolutal flows. A parametric study has been performed to investigate the effects of the initial conditions, molecular weight ratio, Lewis number, and aspect ratio of the cavity for aiding or opposing buoyancy forces. For the range of parameters considered, the results show that variations in the density field have larger effects on mass transfer than on heat transfer. For opposing buoyancy forces, the numerical simulations predict complex flow structures and possible chaotic behavior for rectangular vertical cavities according to the value of the molecular weight ratio.  相似文献   

15.
The effect of wall temperature variations on double diffusive natural convection of Al2O3–water nanofluid in a differentially heated square enclosure with constant temperature hot and cold vertical walls is studied numerically. Transport mechanisms of nanoparticles including Brownian diffusion and thermophoresis that cause heterogeneity are considered in non-homogeneous model. The hot and cold wall temperatures are varied, but the temperature difference between them is always maintained 5 °C. The thermophysical properties such as thermal conductivity, viscosity and density and thermophoresis diffusion and Brownian motion coefficients are considered variable with temperature and volume fraction of nanoparticles. The governing equations are discretized using the control volume method. The results show that nanoparticle transport mechanisms affect buoyancy force and cause formation of small vortexes near the top and bottom walls of the cavity and reduce the heat transfer. By increasing the temperature of the walls the effect of transport mechanisms decreases and due to enhanced convection the heat transfer rate increases.  相似文献   

16.
A numerical method for the solution of the vector potential/vorticity vector formulation of the transient, fully three-dimensional Navier-Stokes energy and continuity equations has been applied to simulate the development of natural convective flow within a ‘box’ after a sudden temperature change on a vertical portion of the wall. Only one cavity size has been considered, this having a vertical height of three times its width and a horizontal length of six times its width. A single heated rectangular hot spot or ‘element’ on an otherwise adiabatic wall is centred between the vertical end walls. The opposite vertical wall is held at the intial fluid temperature, and all other walls are assumed to be adiabatic. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy force. The numerical method is an underrelaxation Gauss-Seidel method using finite differencing at each time step. Solutions have been obtained for a Prandtl number of 0.71, for Rayleigh numbers, based on the width, of between 0 and 100000 and for a number of heated element locations and sizes.  相似文献   

17.
The two-region fin model captures the heat spreading behaviour in multilayered composite bodies (i.e., laminates), heated only over a small part of their domains (finite heat source), where there is an inner layer that has a substantial capacity for heat conduction parallel to the heat exchange surface (convection cooling). This resulting heat conduction behaviour improves the overall heat transfer process when compared to heat conduction in homogeneous bodies. Long-term heat storage using supercooling salt hydrate phase change materials, stovetop cookware, and electronics cooling applications could all benefit from this kind of heat-spreading in laminates. Experiments using laminate films reclaimed from post-consumer Tetra Brik cartons were conducted with thin rectangular and circular heaters to confirm the laminate body, steady-state, heat conduction behaviour predicted by the two-region fin model. Medium to high accuracy experimental validation of the two-region fin model was achieved in Cartesian and cylindrical coordinates for forced external convection and natural convection, the latter for Cartesian only. These were conducted using constant heat flux finite heat source temperature profiles that were measured by infrared thermography. This validation is also deemed valid for constant temperature heat sources.  相似文献   

18.
An experimental and numerical study has been made of transient natural convection of water freezing in a cube-shaped cavity. The effect of the heat transfer through the side walls is studied in two configurations: with the cavity surrounded by air and with the cavity immersed in an external water bath of constant temperature. The experimental data for the velocity and temperature fields are obtained using liquid crystal tracers. The transient development of the ice/water interface is measured. The collected data are used as an experimental benchmark and compared with numerical results obtained from a Finite-difference code with boundary fitted grid generation. The computational model has been adopted to simulate as closely as possible the physical experiment. Hence, fully variable fluid properties are implemented in the code, and, to improve modelling of the thermal boundary conditions, the energy equation is also solved inside the bounding walls. Although the general behaviour of the calculated ice front and its volume matches observations, several details of the flow structure do not. Observed discrepancies between experimental and numerical results indicate the necessity of verifying and improving the usual assumptions for modelling ice formation.  相似文献   

19.
Building elements represented by square vertical enclosures encircled with finite walls or with centered solid body, could maintain the equivalent fluid volumes through the volume ratio scale. Present work aims to investigate the fluid flow and heat transfer in these two building elements. Complete two-dimensional numerical simulation of the conjugate heat conduction and natural convection occurring in both enclosures is carried out. An analytical expression for the minimum size of the inserted body at which the body begins to suppress the natural convection flow is proposed and validated by the numerical results. The fluid flow and heat transfer characteristics are analyzed through the streamlines, heatlines, and total heat transfer rates across both enclosures. Results reveal that heat transfer rates across both enclosures are complex functions of the volume ratio scale, Rayleigh number, and the relative thermal conductivity.  相似文献   

20.
A transient two‐dimensional computational model of combined natural convection, conduction, and radiation in a cavity with an aspect ratio of one, containing air as a laminar and non‐participating fluid, is presented. The cavity has two opaque adiabatic horizontal walls, one opaque isothermal vertical wall, and an opposite semitransparent wall, which consists of a 6‐mm glass sheet with a solar control coating of SnS–CuxS facing the cavity. The semitransparent wall also exchanges heat by convection and radiation from its external surface to the surroundings and allows solar radiation pass through into the interior of the cavity. The momentum and energy equations in the transient state were solved by finite differences using the alternating direction implicit (ADI) technique. The transient conduction equation and the radiative energy flux boundary conditions are coupled to these equations. The results in this paper are limited to the following conditions: 104≤Gr≤106, an isothermal vertical cold wall of 21°C, outside air temperatures in the range 30°C≤T0≤40°C and incident solar radiation of AM2 (750 W m−2) normal to the semitransparent wall. The model allows calculation of the redistribution of the absorbed component of solar radiation to the inside and outside of the cavity. The influences of the time step and mesh size were considered. Using arguments of energy balance in the cavity, it was found that the percentage difference was less than 4 per cent, showing a possible total numerical error less than this number. For Gr=106 a wave appeared in the upper side of the cavity, suggesting the influence of the boundary walls over the air flow inside the cavity. A Nusselt number correlation as a function of the Rayleigh number is presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号