首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
相变增韧陶瓷Ⅱ型裂纹增韧分析   总被引:3,自引:3,他引:3  
本文采用压力敏感和权函数法,对相变增韧陶瓷Ⅱ型裂纹的增韧效应进行了理论预测。分别给出了静止裂纹和定常扩展裂纹相变性屏蔽的理论表达式,结果表明;相变对静止裂纹无增韧效应,纹尖端屏蔽来自于裂纹扩展尾区的贡献。  相似文献   

2.
本文采用压力敏感准则和松函数法对相变增韧陶瓷Ⅱ-Ⅲ混合型裂纹的增韧效应进行了理论预测。分别给出了静止裂纹和定常扩展裂纹相变塑性屏蔽的理论表达式。结果表明:相变对静止裂纹有甚微的负屏蔽效应,并随KⅢ/KⅡ的比值而波动;相变对定常扩展裂纹的增韧结果除与材料弹性模量、相变尾区高度和相变体积分数有关外,还与KⅢ/KⅡ的比值有关。  相似文献   

3.
本文采用压力敏感准则和权函数法对相变增韧陶瓷Ⅰ-Ⅲ混合型裂纹的增韧效应进行了理论预测。分别给出了静止裂纹和定长扩展裂纹相变塑性屏蔽的理论表达式,结果表明:相变对静止裂纹有负屏蔽效应,并随KⅢ/KⅠ比值的增大而趋于零,对扩展裂纹的增韧结果除与材料的弹性模量,相变尾区高度和相变体积分数有关外,还与KⅢ/KⅠ的比值有关。  相似文献   

4.
相变增韧陶瓷Ⅲ型裂纹增韧分析   总被引:7,自引:0,他引:7  
本文采用压力敏感相变准则和权函数法对相变增韧陶瓷Ⅲ型裂纹的增韧效应进行了理论预测,分别给出了静止裂纹和定常扩展裂纹相变塑性屏蔽的理论表达式。结果表明:相变体积膨胀对增韧无贡献,裂尖屏蔽来自于晶格剪切和裂纹扩展尾区的贡献。  相似文献   

5.
共晶基陶瓷复合材料的断裂韧性   总被引:2,自引:0,他引:2  
应用细观力学方法研究了由具有随机尺寸和方位的棒体共晶体构成的共晶基陶瓷复合材料的断裂韧性.首先根据棒状共晶体的细观结构特性,考虑共晶体边界处的微观滑移确定共晶陶瓷复合材料的开裂应力,当外载荷达到开裂应力时,裂纹开始扩展.然后分析裂纹表面处的棒状共晶体桥联力使裂纹产生闭合效应,减小裂纹尖端的应力集中,建立棒状共晶体桥联增韧机制;再依据棒状共晶体拔出过程中摩擦力做功,建立棒状共晶体拔出增韧机制.最后在棒状共晶体的桥联与拔出增韧机制的基础上,得到了共晶基陶瓷复合材料断裂韧性的理论表达式.结果表明共晶基陶瓷复合材料的断裂韧性与棒状共晶体的长径比密切相关.  相似文献   

6.
弧形微裂纹是复合陶瓷内的常见现象,含少量弧形微裂纹复合陶瓷比无裂纹复合陶瓷的韧性更好,而粒子相变能够提高陶瓷的断裂韧性已经得到普遍承认.本文考虑粒子相变与弧形微裂纹的联合效应,建立含弧形微裂纹相变复合陶瓷的混合型裂纹增韧模型.首先应用压力敏感准则和应变能释放率断裂准则,对含弧形微裂纹复合陶瓷的增韧效应进行了理论预测;然后采用权函数法推导出混合型裂纹的增韧结果,分别给出了静止裂纹和稳态扩展裂纹相变塑性屏蔽的理论表达式;最后根据相变区域与弧形微裂纹相之间的关系,分析增韧结果的尺度效应.结果表明:相变对静止裂纹无增韧作用;相变对稳态扩展裂纹的增韧结果除与材料弹性模量、相变尾区高度和相变粒子的体积分数有关外,还与复合陶瓷的颗粒直径和弧形微裂纹的体积分数有关.  相似文献   

7.
采用压力敏感准则和权函数法对相变增韧陶瓷I-II混合型裂纹的增韧效应进行了理论预测,分别给出了静止裂纹和定常扩展裂纹相变生屏蔽的理论表达式,并通过计算机进行了数值计算,结果表明:相变对静止裂纹有负屏蔽效应,并随KII/KI的比值增大而增大,对定常扩展裂纹的增韧结果除与材料弹性模量,相变尾区高度和相变体积分数有关外,还随KII/KI的比值增大而增大,说明相变对II型裂纹的增韧作用比对I型裂纹的增韧作用更显著。  相似文献   

8.
裂纹面摩擦接触引起的断裂韧性增长的研究   总被引:2,自引:2,他引:2  
李永东  张男  唐立强  贾斌 《力学学报》2005,37(3):280-286
采用弹黏塑性的材料本构关系, 建立了压、剪混合型裂纹常速准静 态扩展的力学模型, 求得了裂纹面摩擦接触条件下裂纹尖端场的数值解, 并基于数 值结果讨论了扩展裂纹的摩擦效应. 计算和分析表明, 裂纹面的摩擦效应主要表现 在两个方面. 第一方面是摩擦会导致裂纹尖端区材料的断裂韧性增高, 并且裂纹面间的摩擦作用越强, 增韧效果越显著. 摩擦增韧的机制可以解释为裂纹 面间的摩擦作用导致裂纹尖端塑性区尺寸变大, 使裂纹尖端场的塑性变形能增加, 从而使得裂纹尖端区材料增韧. 摩擦生热并不是导致材料断裂韧性增长的根本机制. 第二方面是摩擦会导致``断裂延缓'. 利用裂纹面的摩擦来提高构件的承载能力和延长构件的服役寿命具有较大的工程实用价值.  相似文献   

9.
增韧环氧树脂的动态裂纹扩展研究   总被引:1,自引:0,他引:1  
本文主要进行了环氧及增韧环氧树脂的断裂韧性及裂纹快速扩展的试验研究。试验过程中采用了GLC-1型高速裂纹扩展测试仪来测试裂纹的扩展速度,得到在裂纹扩展过程中裂纹扩展速度曲线。本文结合不同的计算公式及有限元分析方法,讨论了各个确定断裂韧性公式的准确程度,发现传统的静态断裂韧性的分析方法所得到的结果偏大,有一定的危险性,建议使用试验与数值计算相结合的方法;同时还发现增韧不仅可以提高材料的静态和动态断裂性能,而且在裂纹扩展过程中可以起到减缓裂纹扩展的作用  相似文献   

10.
对具有幂硬化塑性剪切界面层效应的复合材料桥联进行断裂力学分析,得到了桥联增韧和裂纹张开位移的控制方程,并按照非线性Volterra型积分方程的迭代解给出其数值结果。并详细讨论界面相参数对桥联效应的影响。  相似文献   

11.
Material toughening could be furnished by the energy dissipating wakes and bridging segments during crack growth. According to their contributions to the energy integral applicable to a growing crack, the toughening mechanisms are categorized as: dilatational plasticity and induced shear yielding in the crack wakes, bridging due to second inclusion phases, and the matrix bridging caused by wavy crack front. Detailed toughening analysis is pursued for structural polymers and composite materials reinforced by short aligned fibers. Sponsored by the State Education Commission of China and by the Fok Ying-Tung Education Foundation  相似文献   

12.
Transformation toughening has enhanced the fracture toughness of certain Zirconia-Toughened Ceramics (ZTC) by factors of 2–4. The primary explanation of toughening, by McMeeking and Evans [1] and Budiansky et al. [2], suggests that the main source of toughening is the energy stored by the transformed inclusions in the wake of a propagating crack. In the case of supercritical ZTC where the boundary of the transformed zone is a phase boundary (surface of strain discontinuity), this paper suggests an additional source of toughening – that due to propagation of the phase boundary. By extending the J-integral to cracked bodies containing surfaces of strain discontinuity, the transformation toughening for a steady Mode I crack is evaluated.  相似文献   

13.
B small scale bridging (SSB) assumption, a theoretical study is made of the interaction between the fracture toughening effects of transforming particles and crack bridging fibers which are aligned in the direction perpendicular to the crack surfaces. The fibers bridging the crack are assumed to undergo large amounts of slipping inside the matrix. It is found that the interaction can be synergistic over a parametric range of material properties of the ceramic composite system. The Mode-1 plane-strain fracture toughness of the ceramic composite system is determined in terms of fiber strength, transformation toughening parameters and interaction parameters. The results obtained here are qualitatively similar to those for the interaction between the fracture toughening effects of transforming particles and crack-bridging ductile particles by A and B (1988a, J. Mech. Phys. Solids 36, 581).  相似文献   

14.
The structural reliability of many brittle materials such as structural ceramics relies on the occurrence of intergranular, as opposed to transgranular, fracture in order to induce toughening by grain bridging. For a constant grain boundary strength and grain boundary toughness, the current work examines the role of grain strength, grain toughness, and grain angle in promoting intergranular fracture in order to maintain such toughening. Previous studies have illustrated that an intergranular path and the consequent grain bridging process can be partitioned into five distinct regimes, namely: propagate, kink, arrest, stall, and bridge. To determine the validity of the assumed intergranular path, the classical penetration/deflection problem of a crack impinging on an interface is re-examined within a cohesive zone framework for intergranular and transgranular fracture. Results considering both modes of propagation, i.e., a transgranular and intergranular path, reveal that crack-tip shielding is a natural outcome of the cohesive zone approach to fracture. Cohesive zone growth in one mode shields the opposing mode from the stresses required for cohesive zone initiation. Although stable propagation occurs when the required driving force is equivalent to the toughness for either transgranular or intergranular fracture, the mode of propagation depends on the normalized grain strength, normalized grain toughness, and grain angle. For each grain angle, the intersection of single path and multiple path solutions demarcates “strong” grains that increase the macroscopic toughness and “weak” grains that decrease it. The unstable transition to intergranular fracture reveals that an increasing grain toughness requires a growing region of the transgranular cohesive zone be near the cohesive strength. The inability of the body to provide the requisite stress field yields an overdriven and unstable configuration. The current results provide restrictions for the achievement of substantial toughening through intergranular fracture.  相似文献   

15.
16.
This paper presents the results of a combined experimental and theoretical study of microstructure and thermal shock resistance of an aluminosilicate ceramic. Shock-induced crack growth is studied in sintered structures produced from powders with different particle size ranges. The underlying crack/microstructure interactions and toughening mechanisms are elucidated via scanning electron microscopy (SEM). The resulting crack-tip shielding levels (due to viscoelastic crack bridging) are estimated using fracture mechanics concepts. The implications of the work are discussed for the design of high refractory ceramics against thermal shock.  相似文献   

17.
Two basic mechanisms of toughening brittle solids are presented. They involve crack-tip shielding from crack deformation and/or crack bridging by introducing ductile particles in the crack wake region. The crack opening displacement is realized from the constant volume plastic flow of the particles according to the model in [J. Dominguez, C.A. Brebbia, (Eds.), Proceedings of Computational Methods in Contact Mechanics V, WIT Press, Boston, 2001, p. 87; A.T. Yokobori, R.O. Ritchie, K. Ravi-Chandar, B.L. Karihaloo, (Eds.), Proceedings of ICF10, Elsevier, Oxford, 2001, p. 348]. The second mechanism involves arresting the crack ductile phase such that it can only renucleate on the other side. As a result of trapping the crack, the material is toughened intrinsically. Energy considerations are made to estimate the extent of particle/matrix debonding. A perturbation analysis [A.T. Yokobori, R.O. Ritchie, K. Ravi-Chandar, B.L. Karihaloo, (Eds.), Proceedings of ICF10, Elsevier, Oxford, 2001, p. 348] is used to account for the configuration of the front of a planar crack trapped by a periodic array of closely spaced bridges. Debonding of the particle/matrix interface controls is associated with the two aforementioned mechanisms. Comparison of analytical results with some experimental observations is provided.  相似文献   

18.
Ductile reinforcements can supply fracture toughness to a polymer matrix by pulling out and by plastically deforming. In the case of metal reinforcements that are not in a toughened condition, there may be more toughening to be gained when the fibers remain in the matrix and plastically deform rather than pulling out. These fibers can be said to have an unused plastic potential. When these fibers bridge a crack, their plastic deformation causes a rise in the force which is trying to pull out the fiber. Because of this, the shape of the fiber must be adjusted along its length if it is to remain anchored and contribute its plastic work. The use of anchored, ductile fibers provides a new design axis that brings new possibilities not achievable by the current research focus on the fiber–matrix interface. This paper describes the experimental pullout of aligned ductile fibers from a polymer matrix, and indicates the effect of the shape and embedded length of the fiber on the toughness increase of the composite. Anchored, plastically deforming fibers are shown to provide a major improvement to the toughening. Even for unoptimized ductile fibers, the calculated toughening improvement equals or exceeds the toughening available from current short glass or graphite fibers. In addition, pullout values are obtained for fibers that are embedded at an angle, simulating fiber bridging from fibers not perpendicular to the crack surface. These results further demonstrate the toughening efficiency of ductile fibers.  相似文献   

19.
An elastic analysis of an internal crack with bridging fibers parallel to the free surface in an infinite orthotropic elastic plane is studied. An asymmetrical dynamic model for bridging fiber pull-out of unidirectional composite materials is presented for analyzing the distributions of stress and displacement with the internal asymmetrical crack under the loading conditions of an applied non-homogenous stress and the traction forces on crack faces yielded by the bridging fiber pull-out model. Thus the fiber failure is determined by maximum tensile stress, resulting in fiber rupture and hence the crack propagation would occur in a self-similarity manner. The formulation involves the development of a Riemann-Hilbert problem. Analytical solution of an asymmetrical propagation crack of unidirectional composite materials under the conditions of two moving loads given is obtained, respectively. After those analytical solutions were utilized by superposition theorem, the solutions of arbitrary complex problems could be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号