首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Micro shock tube flows were simulated using unsteady 2D Navier–Stokes equations combined with boundary slip velocities and temperature jumps conditions. These simulations were performed using the parallel version of a multi-block finite-volume home code. Different initial low pressures and shock tube diameters allow to have the scaling ratio ReD/4L vary. The numerical results show a strong attenuation of the shock wave strength with a decrease of the hot flow values along the tube. When the scaling ratio decreases the shock waves can transform into compression waves. Comparison to the existing 1D models also shows the limit of these models.  相似文献   

2.
The stability of shock wave based on the definition of Landau and Lifschitz[1] is treated in this paper. This is tantamount to solving the problem of interaction of small disturbances with a shock wave. Small disturbances are introduced on both sides of a steady, non-dissipative, plane shock wave. Landau et al.[1] obtained the stability criterionM 1>1,M 2<1 for small disturbances which are travelling in the direction perpendicular to the shock wave. In the present paper, we assume that the small disturbances may be two dimensional, i.e. they may be propagating in the direction inclined to the shock wave. The conclusions obtained are: regardless of whether the incident wave and diverging wave are defined according to the direction of the phase velocity or the group velocity, the shock wave is unstable for some frequencies and longitudinal wave lengths of the disturbances, even if the conditionsM 1>1,M 2<1 are fulfilled. Then several experiments are proposed, and the problem of ways to define the incident wave and diverging wave is discussed. The meaning of this problem is illustrated. The same results can be obtained for the steady shock wave in a tube.  相似文献   

3.
The interaction of a planar shock wave with a spherical density inhomogeneity is studied experimentally under reshock conditions. Reshock occurs when the incident shock wave, which has already accelerated the spherical bubble, reflects off the tube end wall and reaccelerates the inhomogeneity for a second time. These experiments are performed at the Wisconsin Shock Tube Laboratory, in a 9m-long vertical shock tube with a large square cross section (25.4×25.4 cm2). The bubble is prepared on a pneumatically retracted injector and released into a state of free fall. Planar diagnostic methods are used to study the bubble morphology after reshock. Data are presented for experiments involving two Atwood numbers (A = 0.17 and 0.68) and three Mach numbers (1.35 < M < 2.33). For the low Atwood number case, a secondary vortex ring appears immediately after reshock which is not observed for the larger Atwood number. The post-reshock vortex velocity is shown to be proportional to the incident Mach number, M, the initial Atwood number, A, and the incident shock wave speed, W i.  相似文献   

4.
Highly complicated shock wave dynamics has been numerically calculated by solving the Euler equations for a circular shock tube suddenly expanded three times of the original tube diameter atx=0. Shock waves of different shock Mach number,M s =1.5 and 2.0, have produced remarkably distinct blast jet structures. A planar shock wave took its final form after the blast by repeated Mach reflections of the blast wave: the first one at the wall and the second one at the central axis. The central Mach disc overtook and merged with the annular Mach stem before the planar shock wave was formed. In contrast to the blast wave which would propagate spherically in an open space, the present blast wave undergoes complex morphological transformation in the restricted flow passage, resulting in an unstable and oscillatory blast jet structure of highly rotational nature. The slipstream tube emanating from the shock tube exit corner decomposed into a chain of small vortex rings that interacted with the barrel shock of the jet, which caused periodic collapse of the jet structure. The finite volume-FCT formulation equipped with the time-dependenth-refinement adaptive unstructured triangular mesh technique in the present paper has contributed to resolution of the intricate physical discontinuities developing in the blast flow fields.  相似文献   

5.
The effect of initial pressure on aluminum particles–air detonation was experimentally investigated in a 13 m long, 80 mm diameter tube for 100 nm and 2 μm spherical particles. While the 100 nm Al–air detonation propagates at 1 atm initial pressure in the tube, transition to the 2 μm aluminum–air detonation occurs only when the initial pressure is increased to 2.5 atm. The detonation wave manifests itself in a spinning wave structure. An increase in initial pressure increases the detonation sensitivity and reduces the detonation transition distance. Global analysis suggests that the tube diameter for single-head spinning detonation or characteristic detonation cell size would be proportional to (d 0: aluminum particle size, p 0: initial pressure). Its application to the experimental data results in m ~ O(1) and n ~ O(1) for 1 to 2 μm aluminum–air detonation, thus indicating a strong dependence on initial pressure and gas-phase kinetics for the aluminum reaction mechanism in detonation. Hence, combustion models based on the fuel droplet diffusion theory may not be adequate in describing micrometric aluminum–air detonation initiation, transition and propagation. For 2 μm aluminum–air mixtures at 2 atm initial pressure and below, experiments show a transition to a “dust quasi-detonation” that propagates quasi-steadily with a shock velocity deficit nearly 40% with respect to the theoretical C–J detonation value. The dust quasi- detonation wave can propagate in a tube with a diameter less than 0.4–0.5 times the diameter required for a spinning detonation wave.  相似文献   

6.
Shock wave attenuation by grids and orifice plates   总被引:2,自引:0,他引:2  
The interaction of weak shock waves with porous barriers of different geometries and porosities is examined. Installing a barrier inside the shock tube test section will cause the development of the following wave pattern upon a head-on collision between the incident shock wave and the barrier: a reflected shock from the barrier and a transmitted shock propagating towards the shock tube end wall. Once the transmitted shock wave reaches the end wall it is reflected back towards the barrier. This is the beginning of multiple reflections between the barrier and the end wall. This full cycle of shock reflections/interactions resulting from the incident shock wave collision with the barrier can be studied in a single shock tube test. A one-dimensional (1D), inviscid flow model was proposed for simulating the flow resulting from the initial collision of the incident shock wave with the barrier. Fairly good agreement is found between experimental findings and simulations based on a 1D flow model. Based on obtained numerical and experimental findings an optimal design procedure for shock wave attenuator is suggested. The suggested attenuator may ensure the safety of the shelter’s ventilation systems.  相似文献   

7.
This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressureP 1 and test time τ as parameters in the temperature range 3 300 K<T<5 600 K, pressure range 5 kPa<P 1<12 kPa and τ≅0.4 ms. The project supported by the China Aerodynamics Project for Basic Researches (J13.5.2 ZK04)  相似文献   

8.
In 1954, Benjamin and Lighthill made a conjecture concerning the classical nonlinear problem of steady gravity waves on water of finite depth. According to this conjecture, a point of some cusped region on the (r, s)-plane (r and s are the non-dimensional Bernoulli’s constant and the flow force, respectively), corresponds to every steady wave motion described by the problem. Conversely, at least one steady flow corresponds to every point of the region. In the present paper, this conjecture is proved for near-critical flows (when r attains values close to one), under the assumption that the slopes of wave profiles are bounded. Another question studied here concerns the uniqueness of solutions, and it is proved that for every near-critical value of r only the following waves do exist: (i) a unique (up to translations) solitary wave; (ii) a family of Stokes waves (unique up to translations), which is parametrised by the distance from the bottom to the wave crest. The latter parameter belongs to the interval bounded below by the depth of the subcritical uniform stream and above by the distance from the bottom to the crest of solitary wave corresponding to the chosen value of r.  相似文献   

9.
Interaction of a shock with a sphere suspended in a vertical shock tube   总被引:1,自引:0,他引:1  
Shock wave interaction with a sphere is one of the benchmark tests in shock dynamics. However, unlike wind tunnel experiments, unsteady drag force on a sphere installed in a shock tube have not been measured quantitatively. This paper presents an experimental and numerical study of the unsteady drag force acting on a 80 mm diameter sphere which was vertically suspended in a 300 mm x 300 mm vertical shock tube and loaded with a planar shock wave of M s = 1.22 in air. The drag force history on the sphere was measured by an accelerometer installed in it. Accelerometer output signals were subjected to deconvolution data processing, producing a drag history comparable to that obtained by solving numerically the Navier-Stokes equations. A good agreement was obtained between the measured and computed drag force histories. In order to interpret the interaction of shock wave over the sphere, high speed video recordings and double exposure holographic interferometric observations were also conducted. It was found that the maximum drag force appeared not at the time instant when the shock arrived at the equator of the sphere, but at some earlier time before the transition of the reflected shock wave from regular to Mach reflection took place. A negative value of the drag force was observed, even though for a very short duration of time, when the Mach stem of the transmitted shock wave relfected and focused at the rear stagnation point of the sphere.Received: 31 March 2003, Accepted: 7 July 2003, Published online: 2 September 2003  相似文献   

10.
One-dimensional interaction between a planar shock wave and a rubber or low-porosity foam is investigated experimentally and numerically. The considered polyurethane foam is of high density (ρ c=290 kg/m3) and lowporosity (ϕ=0.76), and this corresponds to an intermediate condition between rubber and high-porosity foam. Stress-strain relations for the low-porosity foam are investigated by machine tests, which show larger deformation against compressive force and higher non-linearity in stress-strain curve as compared with rubber. Also the low-porosity foam shows a hysteresis cycle. Experiments on shock wave-foam interactions are conducted by using a shock tube. Experimental time history of the surface stress of the foam at the end of the shock tube does not show shock type stress increase, but continuous excessive stress rise can be seen, and then dumping vibration approaching to gas dynamic pressure of the reflected shock wave is followed, and the highest stress amounts about 3∼4 times of the pressure after the reflected gas dynamic shock wave. Interactive motions of gas and the low-porosity foam are analyzed using the Lagrangean coordinates system. An elastic model for a low-porosity foam is assumed to be a single elastic material with the measured stress-strain relation. Results of numerical simulations are compared with the shock tube experiments, which show essentially same stress variations with experimental results.  相似文献   

11.
An experimental and numerical study was made of converging cylindrical shock waves. The goal of the present study was to clarify the movement and instability of the converging cylindrical shock waves. Experiments were conducted in an annular shock tube of 230 mm o.d. and 210 mm i.d. connected to a cylindrical test section of 210 mm diameter. Double exposure holographic interferometry was used to visualize the converging cylindrical shock waves. Incident shock Mach numbers ranged between 1.1 and 2.0 in air. A numerical simulation was conducted using the TVD finite difference scheme. It was found in the experiments that although the initial shock wave configuration looked cylindrical, it was gradually deformed with propagation towards the center and finally showed mode-four instability. This is attributable to the existence of initial disturbances which were introduced by the struts which supported the inner tube of the annular shock tube. This trend was significant for stronger shock waves indicating that at the last stage of shock wave convergence the initial perturbations of the converging cylindrical shock wave were amplified to form the triple point of Mach reflection. The numerical results correctly predicted the experimental trend.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

12.
The main regularities of the formation of conditions behind the reflected shock wave in a shock tube in presence of chemical reactions are studied. The dependence of the parameters of supersonic flows on the conditions at the nozzle inlet is discussed.  相似文献   

13.
The mechanism of precursor ionization ahead of strong shock waves has been studied in a low density shock tube. The experimental results are illustrated with Arrhenius plots with kink points dividing them into two parts with apparent activation energy ratio 1:2, namely with the values 7.7 eV and 15.3 eV, and varying with first and third power of the density respectively. A model is proposed to interpret the facts where the process taking place in the precursor region, is a two step photo ionization accompanied with the drift flow effect of the gas relative to the shock wave or the ionization recombination effect according to whether the shock speed and initial density are low enough. The product of the A-A collision excitation cross section coefficientS * multiplied by the radiation cross sectionQ * of ArgonS *×Q *=1×10−36 (cm4eV−1) and the three body recombination coefficient of Argon at room temperaturek ra =1×10−24 (cm−6s−1). The project supported by the National Natural Science Foundation of China  相似文献   

14.
采用高精度的多介质Ghost-Fluid方法,对马赫数为1.15的激波分别作用于单模大扰动Air-CO2、Air-SF6、Air-N2和Air-He界面后的Richtmyer-Meshkov不稳定现象进行了数值研究,得到了不同时刻扰动界面的演化图像,给出了流场的密度等值线和密度纹影图,同实验结果吻合较好。给出了界面的扰动增长随时间变化的情况,并同理论模型进行了对比。对激波从轻气体进入重气体的情况,扰动增长可采用Sadot模型描述线性阶段和早期非线性阶段;对于弱激波同密度接近的气体界面的相互作用,线性阶段时间较长,可用线性模型描述。  相似文献   

15.
The shock tube experiments of inclined air/SF6 interface instability under the shock wave with the Mach numbers 1.23 and 1.41 are conducted. The numerical simulation is done with the parallel algorithm and the multi-viscous-fluid and turbulence (MVFT) code of the large-eddy simulation (LES). The developing process of the interface accelerated by the shock wave is reproduced by the simulations. The complex wave structures, e.g., the propagation, refraction, and reflection of the shock wave, are clearly revealed in the flows. The simulated evolving images of the interface are consistent with the experimental ones. The simulated width of the turbulent mixing zone (TMZ) and the displacements of the bubble and the spike also agree well with the experimental data. Also, the reliability and effectiveness of the MVFT in simulating the problem of interface instability are validated. The more energies are injected into the TMZ when the shock wave has a larger Mach number. Therefore, the perturbed interface develops faster.  相似文献   

16.
Full field particle image velocimetry (PIV) measurements are obtained for the first time in Richtmyer–Meshkov instability shock tube experiments. The experiments are carried out in a vertical shock tube in which the light gas (air) and the heavy gas (SF6) flow from opposite ends of the shock tube driven section and exit through narrow slots at the interface location. A sinusoidal perturbation is given to the interface by oscillating the shock tube in the horizontal direction. Richtmyer–Meshkov instability is then produced by the interaction with a weak shock wave (M s  = 1.21). PIV measurements are obtained by seeding the flow with 0.30 μm polystyrene Latex spheres which are illuminated using a double-pulsed Nd:YAG laser. PIV measurements indicate the vorticity to be distributed in a sheet-like distribution on the interface immediately after shock interaction and that this distribution quickly rolls up into compact vortices. The integration of the vorticity distribution over one half wave length shows the circulation to increase with time in qualitative agreement with the numerical study of Peng et al. (Phys. Fluids, 15, 3730–3744, 2003).  相似文献   

17.
The article discusses the development of one-dimensional flows in a viscous heat-conducting gas using the example of two flows: 1) the flow arising with the decomposition of a discontinuity of the pressure in the quiescent gas (flow in a shock tube); 2) the flow arising with the application of a constant heat flow at a gassolid interface. For such flows, there has been very little study of the initial stage of the process, right up to the time when nonheat-conducting zones are separated out, described by the Euler equations, as well as dissipation zones of the type of a shock wave or a boundary layer, which can be treated using asymptotic methods [1–3]. With the investigation of the initial stage, the complete solution of the system of Navier—Stokes equations is required. The present article discusses the initial stage of the flows on the basis of a numerical solution of problems 1 and 2. A study is made of the effect of the Prandtl number and of the viscosity coefficient on the behavior of the gas.  相似文献   

18.
Unsteady drag on a sphere by shock wave loading   总被引:2,自引:0,他引:2  
The dynamic drag coefficient of a sphere by shock wave loading is investigated numerically and experimentally. The diameter of the sphere is varied from 8 m to 80 mm in numerical simulation. The axisymmetric Navier-Stokes equations are solved on a fine grid, and the grid convergence of the drag coefficient is achieved. The numerical result is validated by comparing the experimental data of a 80 mm sphere, measured by the accelerometer in a vertical shock tube. It is found that the sphere experiences in the early interaction one order higher drag than in the steady state. A transient negative drag, mainly resulting from the focusing of shock wave on the rear side of the sphere, is observed only for high Reynolds number flows, and the drag becomes positive because of increased skin friction for low Reynolds number flows.Received: 10 March 2004, Accepted: 24 May 2004, Published online: 20 August 2004[/PUBLISHED]M. Sun: Send offprints requests to  相似文献   

19.
H. R. Yu  H. Chen  W. Zhao 《Shock Waves》2006,15(6):399-405
Early works on the detonation driven shock tube are reviewed briefly. High initial pressure detonable mixture can be used in backward-detonation driver when the buffer tube is attached to the end of the driver for eliminating the excessive reflected peak pressure. Experimental data showed that an improvement on attenuation of the incident shock wave generated by the forward driver can be obtained, provided the diameter of the driver is larger than that of the driven section and an abrupt reduction of cross-section area is placed just beyond the diaphragm. Also, it is clearly verified by a numerical analysis. An additional backward-detonation driver is proposed to attach to the primary detonation driver and on condition that the ratios of initial pressure in the additional driver to that in the primary driver exceed the threshold value, the Taylor wave behind detonation wave in the primary detonation driver can be eliminated completely.  相似文献   

20.
B. M. Argrow 《Shock Waves》1996,6(4):241-248
Nonclassical phenomena associated with the classical dynamics of real gases in a conventional shock tube are studied. A TVD predictor-corrector (TVD-MacCormack) scheme with reflective endwall boundary conditions is used for the one-dimensional Euler equations to simulate the evolution of the wave field of a van der Waals gas. Depending upon the initial conditions of the gas, wave fields are produced that contain nonclassical phenomena such as expansion shocks, composite waves, splitting shocks, etc. In addition, the interactions of waves reflected from the endwalls produce both classical and nonclassical phenomena. Wave field evolution is depicted using plots of the flow variables at specific times and withx-t diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号