共查询到18条相似文献,搜索用时 46 毫秒
1.
采用三维守恒清晰界面数值方法, 研究平面激波冲击并排液滴的动力学过程. 研究的焦点在于激波接触液滴后的复杂波系结构生成, 以及并排液滴相互耦合作用诱导的单个液滴非对称界面演化. 首先, 分析并排液滴之间界面通道内的波系结构发展, 发现在冲击初期由于反射激波相交而形成新的反射激波以及马赫杆; 这些流动现象与液滴另外一侧 (非通道侧) 由激波反射所形成的弯曲波阵面截然不同, 而且所导致的液滴横向两侧流场差异是中后期冲击过程液滴两侧界面非对称演化的主要原因. 其次, 研究冲击中期时, 特别是入射激波已运动至液滴下游并远离并排液滴, 界面形态的演化过程和规律, 揭示通道下游出口处由于气流膨胀导致的界面闭合、以及随后气流阻塞导致的界面破碎等新的流动现象. 最后, 研究液滴间距对并排液滴相互作用的影响规律, 发现液滴间距大小与通道内压力峰值具有明显的关联关系. 研究表明, 更小的液滴间距不仅带来更大的压力峰值, 而且使得峰值出现的时间更早. 相似文献
2.
液滴撞击弯曲壁面现象广泛存在于冶金、化工和航空航天等领域, 在某些场景下, 液滴混入高分子聚合物后会表现黏弹性特性, 为了进一步认识液滴黏弹性对撞击弯曲壁面的影响, 对黏弹性液滴撞击弯曲壁面的过程进行数值模拟研究. 研究基于相场方法和格子玻尔兹曼(LBM)方法, 采用应力场分布函数求解Oldroyd-B本构方程, 并施加适用于弯曲壁面的接触角模型, 发展了固−液−气三相黏弹性流体模拟方法, 对Oldroyd-B黏弹性液滴撞击弯曲壁面问题进行数值模拟, 主要研究了黏度比$ beta $、韦伯数We 和壁面接触角$ theta $对撞击过程的影响. 结果表明: 撞击过程主要包括4个阶段: 运动阶段、铺展阶段、拉伸阶段和撕裂阶段. 黏度比$ beta $越低, 液滴在铺展拉伸阶段动能衰减越慢, 转化的表面能更多, 但更早进入撕裂阶段, 液滴撞击弯曲壁面后, 更容易脱离壁面. 韦伯数We 较小时, 液滴主要在壁面处附着或反弹; We 较大时, 液滴会撕裂并脱离壁面, We 越大, 液滴在铺展拉伸阶段动能衰减越快, 进入撕裂阶段更慢. 壁面的亲疏水性会影响液滴最终的状态, 疏水性越高, 对铺展阶段的阻碍作用越强, 液滴越容易发生撕裂和脱离. 相似文献
3.
悬浮液滴在溶质浓度梯度下会发生自发的移动. 其原因是液滴界面处的非均匀分布溶质会使得流体界面上出现界面张力梯度, 诱发界面流动. 该过程涉及自驱动液滴的界面移动、界面附近流场与溶质浓度场的演化, 以及多物理场的耦合效应. 认识和理解这一复杂动力学过程具有一定的基础科学意义. 文章通过联合守恒型Allen-Cahn方程、不可压Navier-Stokes方程和溶质的对流扩散方程, 构建了一套能够描述溶质梯度诱导液滴自驱动现象的多相-多组分流体数值模型. 通过算例对照和理论对比(静置液滴的拉普拉斯压差、浮力驱动的气泡上升和溶质浓度驱动液滴的迁移)验证了数值模型的准确性. 模拟并研究了不同Marangoni数下溶质Marangoni效应诱导的双液滴融合或分离现象. 结果表明, 液滴的尺寸越大, 移动速度越快, 且增大Marangoni数使得自驱动液滴界面传质从扩散主导转变为对流主导, 增强了液滴移动对环境溶质场的影响, 进而推迟两液滴的融合发生时刻或者减小两者的分离速度. 为后续解决多相-多组分流体系统中的物理问题提供了一套可靠的数值模型, 为多组分微液滴操控提供了参考数据. 相似文献
4.
液滴在电场作用下的变形是电流体动力学的基础课题之一,表面张力的计算精度对液滴变形量的模拟结果有重要影响。本文以开源计算流体动力学平台OpenFOAM的VOF模型为框架,研究了MULES和isoAdvector两类界面更新算法与相分数梯度和RDF函数两类曲率算法对电场作用下液滴变形模拟精度的影响。研究表明,isoAdvector算法相比MULES算法对网格密度的要求更低,但其耦合相分数梯度算法计算表面张力的误差较高。isoAdvector算法耦合RDF函数算法计算误差较低,并且在使用轴对称网格时,只有该算法能够同时处理液滴平行于电场和垂直于电场方向的变形,得到的数值结果与解析解吻合较好。 相似文献
5.
6.
7.
本文使用VOF方法将微液滴在粗糙壁面上的接触现象转化为不可压缩两相流动问题,并对其进行三维数值模拟.选择具有柱形突起和槽道两种微结构的壁面进行模拟.计算了不同粗糙系数时液滴在突起结构表面的静止形态和接触角,计算结果和实验数据吻合得较好.和理论模型进行比较,分析了经典模型的适用范围.对于微槽道结构的壁面,计算给出不同方向测量得到的液滴接触角.实现了液滴在倾斜壁面上滑落过程的模拟.液滴沿斜面下滑时,前进角和后退角的变化存在周期性,这一周期性变化和表面粗糙结构密切相关. 相似文献
8.
9.
用两相流体力学模型对气体 燃料液滴系统进行了研究。数值模拟了点火后两相系统爆轰波的发展过程,得到爆轰波的结构和参数。数值模拟结果表明气体 燃料液滴系统爆轰波有较宽的反应区,因而两相爆轰波的曲率对爆速的影响效应十分明显。进行了燃料液滴尺寸对爆轰波的结构和参数的影响的数值模拟。除了很小的液滴外,燃料液滴在爆轰波前导激波面和CJ面间不能完全气化。随着液滴尺寸的增加,燃料液滴在爆轰波前导激波面和CJ面间释放出的能量随之减少,爆轰参数也随之下降。 相似文献
10.
液滴碰撞现象普遍存在于动力装置燃烧室喷嘴的下游区域,影响燃料的雾化性能。为了揭示相同直径的双液滴中心碰撞机理,求解了轴对称坐标系下的N-S方程,采用VOF(Volume of Fluid)方法捕捉液滴碰撞过程中气液自由表面的演化规律。利用Qian等提供的实验结果对计算模型进行数值校验,验证了模型的准确性。在此基础上,研究了环境压强对液滴碰撞反弹后不同结果(分离和融合)的影响,分析了环境压强和Weber数对液滴碰撞分离的影响。结果表明,液滴在碰撞反弹后的状态(分离或融合)是由液滴间气膜压强与环境气动阻力共同作用的结果,环境压强对液滴碰撞分离过程基本没有影响;Weber数越大,碰撞过程中变形的幅度越大。 相似文献
11.
In this paper we present a three‐dimensional Navier–Stokes solver for incompressible two‐phase flow problems with surface tension and apply the proposed scheme to the simulation of bubble and droplet deformation. One of the main concerns of this study is the impact of surface tension and its discretization on the overall convergence behavior and conservation properties. Our approach employs a standard finite difference/finite volume discretization on uniform Cartesian staggered grids and uses Chorin's projection approach. The free surface between the two fluid phases is tracked with a level set (LS) technique. Here, the interface conditions are implicitly incorporated into the momentum equations by the continuum surface force method. Surface tension is evaluated using a smoothed delta function and a third‐order interpolation. The problem of mass conservation for the two phases is treated by a reinitialization of the LS function employing a regularized signum function and a global fixed point iteration. All convective terms are discretized by a WENO scheme of fifth order. Altogether, our approach exhibits a second‐order convergence away from the free surface. The discretization of surface tension requires a smoothing scheme near the free surface, which leads to a first‐order convergence in the smoothing region. We discuss the details of the proposed numerical scheme and present the results of several numerical experiments concerning mass conservation, convergence of curvature, and the application of our solver to the simulation of two rising bubble problems, one with small and one with large jumps in material parameters, and the simulation of a droplet deformation due to a shear flow in three space dimensions. Furthermore, we compare our three‐dimensional results with those of quasi‐two‐dimensional and two‐dimensional simulations. This comparison clearly shows the need for full three‐dimensional simulations of droplet and bubble deformation to capture the correct physical behavior. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
12.
J.F. Dijksman 《Flow, Turbulence and Combustion》1998,61(1-4):211-237
The hydrodynamical heart of an ink-jet printer is the print head, in which a large number of miniature valveless pumps are integrated. Each pump, when actuated electrically, delivers exactly one droplet of a specified flight direction, speed and size (drop-on-demand: DOD). In studies of the behaviour of miniature pumps only one pump is usually considered. The issue discussed in this paper is: do size and velocity of a droplet depend on the design of the print head? To answer this question we modelled the print head as a number of identical Helmholtz resonators, all connected to a main supply channel. The main supply channel was connected to the ink reservoir through a hose pillar and was also modelled as a Helmholtz resonator. The behaviour of such a manifold of Helmholtz resonators was analysed in both the frequency and the time domain. The paper concerns the hydro-acoustics and hydrodynamics of piezoelectrically activated ink-jet print heads. 相似文献
13.
Robert W. S. Foulser Stephen G. Goodyear Russell J. Sims 《Transport in Porous Media》1991,6(3):223-240
Flooding oil reservoirs with surfactant solutions can increase the amount of oil that can be recovered. Macroscopic modelling of the process requires relative permeabilities to be functions of saturation and capillary number. With only limited experimental data, relative permeabilities have usually been assumed to be linear functions of saturation at high capillary numbers. The experimental data is reviewed, some of which suggest that this assumption is not necessarily correct. The basis for the assumption is therefore reviewed and it is concluded that the linear model corresponds to microscopically segregated flow in the porous medium. Based on new but equally plausible complementary assumptions about the flow pattern, a mixed flow model is derived. These models are then shown to be limiting cases of a droplet model which represents the mixing scale within the porous medium and gives a physical basis for interpolating between the models. The models are based on physical concepts of flow in a porous medium and so the approach described here represents a significant improvement in the understanding of high capillary number flow. This is shown by the fact that fewer parameters are needed to describe experimental data.Notation
A
total cross-sectional area assigned to capillary bundle
-
A
(i)
physical cross-sectional area of tube i
-
c
(i)
ordered configurational label for droplets in tube i
-
c
configuration label for tube i (order not considered)
-
D
defined by Equation (26)
-
E(...)
expectation value with respect to the trinomial distribution
-
S
r
()
fractional flow of phase
-
k
absolute permeability
-
k
r
relative permeability of phase
-
k
r
0
endpoint relative permeability of phase
-
L
capillary tube length in bundle model
-
m
(i)
number of droplets of phase a occupying tube i
-
n
exponent for phase a in Equation (2)
-
N
number of droplets in bundle model
-
N
c
capillary number
-
p
pressure
-
p(c')
probability of configuration c
-
Q
(i)
total volume flow rate in tube i
-
S
saturation of phase
-
S
flowing saturation of phase
-
S
r
residual saturation of phase
-
S
r
()
saturations when fractional flow of phase is 1 in the case of varying residual saturations for three-phase flow ( )
-
t
c
residence time for droplet configuration c
-
v
(i)
total fluid velocity in bundle tube i
- ,
phase label
- p
pressure differential across capillary bundle
- (i)
tube conductivity defined by Equation (7)
-
viscosity of phase
-
interfacial tension
-
gradient operator
- ...
average over tube droplet configurations 相似文献
14.
15.
16.
17.
浮区法因具有无坩埚接触污染的生长优点而成为生长高完整性和高均匀性单晶材料的重要技术.但熔体中存在的毛细对流会给浮区法晶体生长带来极大挑战,这是由于对流的不稳定会导致晶体微观瑕疵的产生和宏观条纹等缺陷的形成.为了提高浮区法生长单晶材料的品质,研究浮区法晶体生长中毛细对流特性及如何控制其不稳定性显得尤为重要.本文采用数值模拟的方法对半浮区液桥内SixGe1-x体系中存在的热质毛细对流展开研究并施加旋转磁场对其进行控制.结果表明:纯溶质毛细对流表现为二维轴对称模式,温度场主要由热扩散作用决定,而浓度场则由对流和溶质扩散共同支配;纯热毛细对流呈现三维稳态非轴对称流动,浓度分布与熔体内热毛细对流的流向密切相关,等温线在对流较大的区域发生弯曲;耦合溶质与热毛细对流则为三维周期性旋转振荡流.施加旋转磁场后,熔体周向速度沿径向向外增大,熔体内浓度场和流场均呈现二维轴对称分布. 相似文献
18.
浮区法因具有无坩埚接触污染的生长优点而成为生长高完整性和高均匀性单晶材料的重要技术.但熔体中存在的毛细对流会给浮区法晶体生长带来极大挑战,这是由于对流的不稳定会导致晶体微观瑕疵的产生和宏观条纹等缺陷的形成.为了提高浮区法生长单晶材料的品质,研究浮区法晶体生长中毛细对流特性及如何控制其不稳定性显得尤为重要.本文采用数值模拟的方法对半浮区液桥内SixGe1-x体系中存在的热质毛细对流展开研究并施加旋转磁场对其进行控制.结果表明:纯溶质毛细对流表现为二维轴对称模式,温度场主要由热扩散作用决定,而浓度场则由对流和溶质扩散共同支配;纯热毛细对流呈现三维稳态非轴对称流动,浓度分布与熔体内热毛细对流的流向密切相关,等温线在对流较大的区域发生弯曲;耦合溶质与热毛细对流则为三维周期性旋转振荡流.施加旋转磁场后,熔体周向速度沿径向向外增大,熔体内浓度场和流场均呈现二维轴对称分布. 相似文献