首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the propagation of Rayleigh waves in orthotropic non-viscous fluid-saturated porous half-spaces with sealed surface-pores and with impervious surface is investigated. The main aim of the investigation is to derive explicit secular equations and based on them to examine the effect of the material parameters and the boundary conditions on the propagation of Rayleigh waves. By employing the method of polarization vector the explicit secular equations have been derived. These equations recover the ones corresponding to Rayleigh waves propagating in purely elastic half-spaces. It is shown from numerical examples that the Rayleigh wave velocity depends strongly on the porosity, the elastic constants, the anisotropy, the boundary conditions and it differs considerably from the one corresponding to purely elastic half-spaces. Remarkably, in the fluid saturated porous half-spaces, Rayleigh waves may travel with a larger velocity than that of the shear wave, a fact that is impossible for the purely elastic half-spaces.  相似文献   

2.
In this paper, we are interested in the propagation of Rayleigh waves in orthotropic fluid-saturated porous media. This problem was investigated by Liu and Liu (2004). The authors have derived the secular equation of the wave but that secular equation is still in implicit form. The main aim of this paper is to derive explicit secular equation of the wave. By employing the method of polarization vector, the secular equations of Rayleigh waves in explicit form is obtained. This equation recovers the dispersion equation of Rayleigh waves propagating in pure orthotropic elastic half-spaces. Remarkably, the secular equation obtained is not a complex equation as the one derived by Liu and Liu, it is a really real equation.  相似文献   

3.
The Stroh formalism is employed to study Rayleigh and Stoneley waves in exponentially graded elastic materials of general anisotropy under the influence of gravity. The 6×6 fundamental matrix N is no longer real. Nevertheless the coefficients of the sextic equation for the Stroh eigenvalue p are real. The orthogonality and closure relations are derived. Also derived are three Barnett-Lothe tensors. They are not necessarily real. Secular equations for Rayleigh and Stoneley wave speeds are presented. Explicit secular equations are obtained when the materials are orthotropic. In the literature, the secular equations for Stoneley waves in orthotropic materials are obtained without using the Stroh formalism. As a result, it requires computation of a 4×4 determinant. The secular equation presented here requires computation of a 2×2 determinant, and hence is fully explicit. A Rayleigh or Stoneley wave exists in the exponentially graded material under the influence of gravity if the wave can propagate in the homogeneous material without the influence of gravity. As the wave number k????, the Rayleigh or Stoneley wave speed approaches the speed for the homogeneous material.  相似文献   

4.
In this paper we analyze the behavior of plane harmonic waves and Rayleigh waves in a linear thermoelastic material with voids. We take into account the damped effects of the thermal field upon the propagation waves. Consequently, the propagation condition is established in the form of an algebraic equation of 9th degree whose coefficients are complex numbers while the eigensolutions of the thermoelastodynamic with voids system are explicitly obtained in terms of the characteristic solutions. We show that the transverse waves are undamped in time and they are not influenced by the thermal and porous effects while the longitudinal waves are all damped in time and they are coupled with the thermal and porous effects. The related solution of the Rayleigh surface wave problem is expressed as a linear combination of the eigensolutions in concern. The secular equation is established in an implicit form and afterwards an explicit form is written for an isotropic and homogeneous thermoelastic with voids half-space. Furthermore, we use the numerical methods and computations to solve the secular equation for a specific material.  相似文献   

5.
In this paper, we consider the propagation of Rayleigh surface waves in a functionally graded isotropic thermoelastic half-space, in which all thermoelastic characteristic parameters exponentially change along the depth direction. The propagation condition is established in the form of a bicubic equation whose coefficients are complex numbers while the analytical solutions (eigensolutions) of the thermoelastodynamic system are explicitly obtained in terms of the characteristic solutions. The concerned solution of the Rayleigh surface wave problem is subsequently expressed as a linear combination of the three eigensolutions while the secular equation is established in an implicit form. The explicit secular equation is written when an isotropic and homogeneous thermoelastic half-space is considered and some numerical simulations are given for a specific material.  相似文献   

6.
In this paper we consider the propagation of Rayleigh surface waves in an exponentially graded half-space made of an isotropic Kelvin-Voigt viscoelastic material. Here we take into account the effect of the viscoelastic dissipation energy upon the corresponding wave solutions. As a consequence we introduce the damped in time wave solutions and then we treat the Rayleigh surface wave problem in terms of such solutions. The explicit form of the secular equation is obtained in terms of the wave speed and the viscoelastic inhomogeneous profile. Furthermore, we use numerical methods and computations to solve the secular equation for some special homogeneous materials. The results sustain the idea, existent in literature on the argument, that there is possible to have more than one surface wave for the Rayleigh wave problem.  相似文献   

7.
The paper is devoted to correcting structure of the representation for Rayleigh waves at non-semisimple degeneracy of the fundamental matrix. The incorrect representation was given in a paper “Implicit and explicit secular equations for Rayleigh waves in two-dimensional anisotropic media” by Cerv and Plesek (2013) .  相似文献   

8.
The paper is concerned with the propagation of Rayleigh waves in an elastic half-space with impedance boundary conditions. The half-space is assumed to be orthotropic and monoclinic with the symmetry plane x3=0x3=0. The main aim of the paper is to derive explicit secular equations of the wave. For the orthotropic case, the secular equation is obtained by employing the traditional approach. It is an irrational equation. From this equation, a new version of the secular equation for isotropic materials is derived. For the monoclinic case, the method of polarization vector is used for deriving the secular equation and it is an algebraic equation of eighth-order. When the impedance parameters vanish, this equation coincides with the secular equation of Rayleigh waves with traction-free boundary conditions.  相似文献   

9.
The present paper studies the propagation of plane time harmonic waves in an infinite space filled by a thermoelastic material with microtemperatures. It is found that there are seven basic waves traveling with distinct speeds: (a) two transverse elastic waves uncoupled, undamped in time and traveling independently with the speed that is unaffected by the thermal effects; (b) two transverse thermal standing waves decaying exponentially to zero when time tends to infinity and they are unaffected by the elastic deformations; (c) three dilatational waves that are coupled due to the presence of thermal properties of the material. The set of dilatational waves consists of a quasi-elastic longitudinal wave and two quasi-thermal standing waves. The two transverse elastic waves are not subjected to the dispersion, while the other two transverse thermal standing waves and the dilatational waves present the dispersive character. Explicit expressions for all these seven waves are presented. The Rayleigh surface wave propagation problem is addressed and the secular equation is obtained in an explicit form. Numerical computations are performed for a specific model, and the results obtained are depicted graphically.  相似文献   

10.
This paper is concerned with the propagation of Rayleigh waves in an incompressible isotropic elastic half-space overlaid with a layer of non-viscous incompressible water under the effect of gravity. The authors have derived the exact secular equation of the wave which did not appear in the literature. Based on it the existence of Rayleigh waves is considered. It is shown that a Rayleigh wave can be possible or not, and when a Rayleigh wave exists it is not necessary unique. From the exact secular equation the authors arrive immediately at the first-order approximate secular equation derived by Bromwich [Proc. Lond. Math. Soc. 30:98–120, 1898]. When the layer is assumed to be thin, a fourth-order approximate secular equation is derived and of which the first-order approximate secular equation obtained by Bromwich is a special case. Some approximate formulas for the velocity of Rayleigh waves are established. In particular, when the layer being thin and the effect of gravity being small, a second-order approximate formula for the velocity is created which recovers the first-order approximate formula obtained by Bromwich [Proc. Lond. Math. Soc. 30:98–120, 1898]. For the case of thin layer, a second-order approximate formula for the velocity is provided and an approximation, called global approximation, for it is derived by using the best approximate second-order polynomials of the third- and fourth-powers.  相似文献   

11.
The properties of harmonic surface waves in an elastic cylinder made of a rigid material and filled with a fluid are studied. The problem is solved using the dynamic equations of elasticity and the equations of motion of a perfect compressible fluid. It is shown that two surface (Stoneley and Rayleigh) waves exist in this waveguide system. The first normal wave generates a Stoneley wave on the inner surface of the cylinder. If the material is rigid, no normal wave exists to transform into a Rayleigh wave. The Rayleigh wave on the outer surface forms on certain sections of different dispersion curves. The kinematic and energy characteristics of surface waves are analyzed. As the wave number increases, the phase velocities of all normal waves, except the first one, tend to the sonic velocity in the fluid from above __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 9, pp. 48–62, September 2007.  相似文献   

12.
The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit, the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.  相似文献   

13.
Variant techniques are proposed for reproducing the elastic wave propagation in an unbounded medium such as the infinite elements, the absorbing boundary conditions or the perfect matched layers. Here, a simplified approach is adopted by considering absorbing layers characterized by the viscous Rayleigh matrix as studied by Semblat et al. [16] and Rajagopal et al. [14]. Here, further improvements to this procedure are provided. First, we start by establishing the strong form for the elastic wave propagation in a medium characterized by the Rayleigh matrix. This strong form will be used for deriving optimal conditions for damping out in the most efficient way the incident waves while minimizing the spurious reflected waves at the interface between the domain of interest and the Rayleigh damping layer. A procedure for designing the absorbing layer is proposed by targeting a performance criterion expressed in terms of logarithmic decrement of the wave amplitude in the layer thickness. Second, the GC subdomain coupling method, proposed by Combescure and Gravouil [9], is introduced for enabling the choice of any Newmark time integration schemes associated with different time steps depending on subdomains. When wave propagation is predicted by an explicit time integrator, the subdomain strategy is of great interest because it enables a different time integrator for the absorbing layer to be adopted. An external coupling software, based on the GC method, is used to carry out multi=time step explicit/implicit co-computations, making interact in time an explicit FE code (Europlexus) for the domain of interest, with an implicit FE code (Cast3m) handling the absorbing boundary layers. The efficiency of the approach is shown in 1D and 2D elastic wave propagation problems.  相似文献   

14.
The propagation of waves in microstretch thermoelastic homogeneous isotropic plate subjected to stress free thermally insulated and isothermal conditions is investigated in the context of conventional coupled thermoelasticity (CT) and Lord and Shulman (L–S) theories of thermoelasticity. The secular equations for both symmetric and skew-symmetric wave mode propagation have been obtained. At short wavelength limits, the secular equations for symmetric and skew-symmetric modes reduce to Rayleigh surface wave frequency equation. The amplitudes of dilatation, microrotation, microstretch and temperature distribution for the symmetric and skew symmetric wave modes are computed analytically and presented graphically for different theories of thermoelasticity. The theoretical and numerical computations are found to be in close agreement.  相似文献   

15.
In this paper the equations governing small amplitude motions in a rotating transversely isotropic initially stressed elastic solid are derived, both for compressible and incompressible linearly elastic materials. The equations are first applied to study the effects of initial stress and rotation on the speed of homogeneous plane waves propagating in a configuration with uniform initial stress. The general forms of the constitutive law, stresses and the elasticity tensor are derived within the finite deformation context and then summarized for the considered transversely isotropic material with initial stress in terms of invariants, following which they are specialized for linear elastic response and, for an incompressible material, to the case of plane strain, which involves considerable simplification. The equations for two-dimensional motions in the considered plane are then applied to the study of Rayleigh waves in a rotating half-space with the initial stress parallel to its boundary and the preferred direction of transverse isotropy either parallel to or normal to the boundary within the sagittal plane. The secular equation governing the wave speed is then derived for a general strain–energy function in the plane strain specialization, which involves only two material parameters. The results are illustrated graphically, first by showing how the wave speed depends on the material parameters and the rotation without specifying the constitutive law and, second, for a simple material model to highlight the effects of the rotation and initial stress on the surface wave speed.  相似文献   

16.
初应力对压电层状结构声表面波传播性能的影响   总被引:4,自引:0,他引:4  
刘华  王铁军  王子昆 《力学学报》2000,32(4):491-496
研究了压电层状结构中初应力对广义Rayleigh波传播相速度和机电耦合性能的影响,通过求解含初应力的运动微分方程,对自由界面电学开路和短路两种情况得到了相应的相速度方程。给出了具体的数值算例,所得结果对于提高和改善声表面波器件性能有参考意义。  相似文献   

17.
Surface and interfacial impedance matrices play an important role in the construction of Green's functions, the analysis of surface and interfacial waves and the stability assessment of pre-stressed half-spaces or joined half-spaces. This paper studies these matrices for generally anisotropic pre-stressed incompressible elastic materials. It is shown that the surface-impedance matrix satisfies a simple matrix equation which, for plane-strain deformations, can be solved exactly. As a result, explicit secular equations for surface and interfacial wave speeds and explicit wrinkling/buckling conditions for pre-stressed half-spaces and joined half-spaces are obtained. It is also shown that the plane-strain surface-wave problem is mathematically identical to the edge-wave problem for thin elastic plates. Thus, the uniqueness of surface-wave speed is settled by drawing upon a recent proof of the uniqueness of edge-wave speed. Examples are used to show that it is straightforward to solve the secular equations based on the given formulae either exactly (where possible) or numerically.  相似文献   

18.
陈晓 《力学学报》2010,42(1):51-55
漏瑞利波存在于半无限无黏性流体和半无限固体媒质的界面处. 首先推导流固无限各向同性介质界面处漏瑞利波的特征方程和位移及应力的解析计算公式. 然后结合典型结构通过数值计算研究了漏瑞利波特性以及位移和应力在流体和固体中的分布规律. 数值计算结果表明漏瑞利波的相速度和衰减随流固密度比的增大而增大, 在流固界面上法向位移连续而切向位移不连续. 流固密度比对固体媒质中沿垂直于漏瑞利波的传播方向的位移、正应力和剪应力有比较大的影响,而对沿漏瑞利波的传播方向的正应力几乎没影响. 为利用漏瑞利波的无损检测与评价提供了理论基础.   相似文献   

19.
纳米科技的快速发展使压电纳米结构在纳米机电系统中得到广泛应用,形成了诸如纳米压电电子学等新的研究方向.与传统的宏观压电材料相比,在纳米尺度下压电材料往往呈现出不同的力学特性,而造成这种差异的原因之一便是表面效应.本文基于Stroh公式、Barnett-Lothe积分矩阵及表面阻抗矩阵,研究计入表面效应的任意各向异性压电半空间中的表面波传播问题,导出了频散方程.针对横观各向同性压电材料,假设矢状平面平行于材料各向同性面,发现Rayleigh表面波和B-G波解耦,并得到各自的显式频散方程.结果表明,Rayleigh表面波的波速小于偏振方向垂直于表面的体波,而B-G波的波速小于偏振方向垂直于矢状平面的体波.以PZT-5H材料为例,用数值方法考察表面残余应力和电学边界条件对表面波频散特性的影响发现:表面残余应力只对第一阶Rayleigh波有明显的影响;电学开路情形的B-G波比电学闭路情形的B-G波传播快.本文工作可为纳米表面声波器件的设计或压电纳米结构的无损检测提供理论依据.  相似文献   

20.
In this paper, in a development of the static theory derived by Steigmann and Ogden (Proc. Roy. Soc. London A 453 (1997) 853), we establish the equations of motion for a non-linearly elastic body in plane strain with an elastic surface coating on part or all of its boundary. The equations of (linearized) incremental motions superposed on a finite static deformation are then obtained and applied to the problem of (time-harmonic) surface wave propagation on a pre-stressed incompressible isotropic elastic half-space with a thin coating on its plane boundary. The secular equation for (dispersive) wave speeds is then obtained in respect of a general form of incompressible isotropic elastic strain-energy function for the bulk material and a general energy function for the coating material. Specialization of the form of strain-energy function enables the secular equation to be cast as a quartic equation and we therefore focus on this for illustrative purposes. An explicit form for the secular equation is thereby obtained. This involves a number of material parameters, including residual stress and moment in the properties of the coating. It is shown how this equation relates to previous work on waves in a half-space with an overlying thin layer set in the classical theory of isotropic elasticity and, in particular, the significant effect of omission of the rotatory inertia term, even at small wave numbers, is emphasized. Corresponding results for a membrane-type coating, for which the bending moment, inertia and residual moment terms are absent, are also obtained. Asymptotic formulas for the wave speed at large wave number (high frequency) are derived and it is shown how these results influence the character of the wave speed throughout the range of wave number values. A bifurcation criterion is obtained from the secular equation by setting the wave speed to zero, thereby generalizing the bifurcation results of Steigmann and Ogden (Proc. Roy. Soc. London A 453 (1997) 853) to the situation in which residual stress and moment are present in the coating. Numerical results which show the dependence of the wave speed on the various material parameters and the finite deformation are then described graphically. In particular, features which differ from those arising in the classical theory are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号