首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fractures in natural rocks have an important effect on the strength and failure behavior of rock mass, which are often evaluated in rock engineering practice. The theoretical evaluation of mechanical behavior of fractured rock mass has no satisfactory answer due to the role of confining pressure and crack geometry. Therefore, in this paper, conventional triaxial compression experiments were carried out to study the strength and failure behavior of marble samples with two pre-existing closed cracks in non-overlapping geometry. Based on the experimental results of a number of triaxial compression tests, the effect of crack coalescence on the axial supporting capacity and deformation property were investigated with different confining pressures. The results show that intact samples and flawed samples (marble with pre-existing cracks) have different deformation properties after peak stress, which change from brittleness to plasticity and ductility with the increase of confining pressure. The peak strength and failure mode are found depending not only on the geometry of flaw, but also on the confining pressure. The strength of flawed samples shows distinct non-linear behavior, which is in a better agreement with non-linear Hoek–Brown criterion than linear Mohr–Coulomb criterion. For a kind of rock that has been evaluated as a Hoek–Brown material, a new evaluation criterion is put forward by adopting optimal approximation polynomial theory, which can be used to confirm more precisely the strength parameters (cohesion and internal friction angle) of flawed samples. For intact samples, the marble leads to typical shear failure mode with a single fracture surface under different confining pressures, while for flawed samples, under uniaxial compression and a lower confining pressure (σ3 = 10 MPa), tests for coarse and medium marble (the coarse and medium refer to the grain size) exhibit three basic failure modes, i.e., tensile mode, shear mode, and mixed mode (tensile and shear). Shear mode is associated with lower strength behavior. However, under higher confining pressures (σ3 = 30 MPa), for coarse marble, the axial supporting capacity is not related to the geometry of flaw. The friction among crystal grains determines the strength behavior of coarse marble. For medium marble, the failure mode and deformation behavior are dependent on the crack coalescence in the sample. The present research provides increased understanding of the fundamental nature of rock failure under conventional triaxial compression.  相似文献   

2.
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.  相似文献   

3.
Microcracks have great significance for shear strength of brittle rock in compression. A major challenge of this area is to establish the correlation of microcracks and macroscopic shear strength. A new micro–macro method is presented to predict the shear strength of brittle rock in compression. This method incorporates the microcrack model suggested by Ashby, Mohr–Coulomb failure criterion and a crack-strain relation. This crack–strain relation is presented to link the crack growth and axial strain by combining the micro and macro definitions from rock damage. The shear strength and stress–strain relationship of Jinping marble are theoretically investigated in detail. The rationality of this suggested method is verified by using the experimental results founded on Jinping marble. Effects of the initial microcrack size, friction coefficient and confining pressure on internal friction angle, cohesion, and shear strength are also discussed.  相似文献   

4.
A series of triaxial compression experiments were preformed for the coarse marble samples under different loading paths by the rock mechanics servo-controlled testing system. Based on the experimental results of complete stress-strain curves, the influence of loading path on the strength and deformation failure behavior of coarse marble is made a detailed analysis. Three loading paths (Paths I–III) are put forward to confirm the strength parameters (cohesion and internal friction angle) of coarse marble in accordance with linear Mohr-Coulomb criterion. Compared among the strength parameters, two loading paths (i.e. Path II by stepping up the confining pressure and Path III by reducing the confining pressure after peak strength) are suggested to confirm the triaxial strengths of rock under different confining pressures by only one sample, which is very applicable for a kind of rock that has obvious plastic and ductile deformation behavior (e.g. marble, chalk, mudstone, etc.). In order to investigate re-fracture mechanical behavior of rock material, three loading paths (Paths IV–VI) are also put forward for flawed coarse marble. The peak strength and deformation failure mode of flawed coarse marble are found depending on the loading paths (Paths IV–VI). Under lower confining pressures, the peak strength and Young’s modulus of damage sample (compressed until post-peak stress under higher confining pressure) are all lower compared with that of flawed sample; moreover mechanical parameter of damage sample is lower for the larger compressed post-peak plastic deformation of coarse marble. However under higher confining pressures (e.g. σ 3?=?30 MPa), the axial supporting capacity and elastic modulus of damage coarse marble (compressed until post-peak stress under lower confining pressure) is not related to the loading path, while the deformation modulus and peak strain of damage sample depend on the difference of initial confining pressure and post-peak plastic deformation. The friction among crystal grains determines the strength behavior of flawed coarse marble under various loading paths. In the end, the effect of loading path on failure mode of intact and flawed coarse marble is also investigated. The present research provides increased understanding of the fundamental nature of rock failure under different loading paths.  相似文献   

5.
A series of triaxial compression experiments were preformed for the coarse marble samples under different loading paths by the rock mechanics servo-controlled testing system. Based on the experimental results of complete stress-strain curves, the influence of loading path on the strength and deformation failure behavior of coarse marble is made a detailed analysis. Three loading paths (Paths I–III) are put forward to confirm the strength parameters (cohesion and internal friction angle) of coarse marble in accordance with linear Mohr-Coulomb criterion. Compared among the strength parameters, two loading paths (i.e. Path II by stepping up the confining pressure and Path III by reducing the confining pressure after peak strength) are suggested to confirm the triaxial strengths of rock under different confining pressures by only one sample, which is very applicable for a kind of rock that has obvious plastic and ductile deformation behavior (e.g. marble, chalk, mudstone, etc.). In order to investigate re-fracture mechanical behavior of rock material, three loading paths (Paths IV–VI) are also put forward for flawed coarse marble. The peak strength and deformation failure mode of flawed coarse marble are found depending on the loading paths (Paths IV–VI). Under lower confining pressures, the peak strength and Young’s modulus of damage sample (compressed until post-peak stress under higher confining pressure) are all lower compared with that of flawed sample; moreover mechanical parameter of damage sample is lower for the larger compressed post-peak plastic deformation of coarse marble. However under higher confining pressures (e.g. σ 3 = 30 MPa), the axial supporting capacity and elastic modulus of damage coarse marble (compressed until post-peak stress under lower confining pressure) is not related to the loading path, while the deformation modulus and peak strain of damage sample depend on the difference of initial confining pressure and post-peak plastic deformation. The friction among crystal grains determines the strength behavior of flawed coarse marble under various loading paths. In the end, the effect of loading path on failure mode of intact and flawed coarse marble is also investigated. The present research provides increased understanding of the fundamental nature of rock failure under different loading paths.  相似文献   

6.
采用最近开发的三维岩石破裂过程分析软件RFPA3D模拟单边裂纹紧凑拉伸断裂过程。试验中五个不同尺寸的岩样具有相同的力学性质参数分布,模拟结果得到了裂纹扩展中的应力场、位移场和声发射的空间分布以及单边裂纹扩展贯通的过程。单边裂纹拉伸断裂的路径是一个复杂的空间三维曲面,三维裂纹比二维裂纹更为复杂。分析了岩石试样的峰值强度和试样尺寸之间的关系。随着岩样尺寸的增加,峰值强度逐渐减小,并且延性破坏特征更加明显,模拟结果满足岩石的尺寸效应规律。最后模拟了三组不同均匀性的试样拉伸破坏过程,结果表明细观上的非均匀性对岩石尺寸效应有很大影响,随着非均匀性的增加,岩石宏观强度随之提高,即使在均匀材料中一样存在尺寸效应。  相似文献   

7.
Macroscopic pre-existing flaws play an important role in evaluating the strength and the failure modes of a heterogeneous rock mass. Crack initiation, propagation and coalescence from macroscopic pre-existing flaws are considered in a 3-D numerical model (RFPA3D) to investigate their effects on the underlying failure modes of rock. A feature of the code RFPA3D is that it can numerically simulate the evolution of cracks in three-dimensional space, as well as the heterogeneity of the rock mass. Three types of flaw geometries were evaluated numerically against experimental results: Type A for intact specimen, and Types B and C for flawed cylindrical specimens with different macroscopic pre-existing flaws, respectively. The effect of confining pressure on the fracture evolution was also considered. Numerical results showed that both the ligament angle and the flaw angle of two pre-existing cracks can affect the uniaxial compressive strength of the specimen and the mechanism of fracture evolution. In addition, both the uniaxial compressive strength and the accumulated acoustic emission increase with increasing heterogeneity.  相似文献   

8.
A two-dimensional finite element model is used to investigate compressive loading of a brittle ceramic. Intergranular cracking in the microstructure is captured explicitly by using a distribution of cohesive interfaces. The addition of confining stress increases the maximum strength and if high enough, can allow the effective material response to reach large strains before failure. Increasing the friction at the grain boundaries also increases the maximum strength until saturation of the strength is approached. Above a transitional strain rate, increasing the rate-of-deformation also increases the strength and as the strain rate increases, fragment sizes of the damaged specimen decrease. The effects of flaws within the specimen were investigated using a random distribution at various initial flaw densities. The model is able to capture an effective modulus change and degradation of strength as the initial flaw density increases. Effects of confinement, friction, and spatial distribution of flaws seem to depend on the crack coalescence and dilatation of the specimen, while strain-rate effects are result of inertial resistance to motion.  相似文献   

9.
10.
为研究闪长岩在单轴加载过程中的声发射和各向波速变化规律,在单轴阶段加载和循环阶段加载条件下,对闪长岩岩样破裂过程中的声发射累计数、不同应力水平不同方向的波速、切线模量、轴向应变速率进行了研究。实验结果表明:(1)随着应力水平的增高,声发射事件数不断增加,在高应力水平(约80%峰值强度)时,声发射累计数急剧增多,随后切线模量出现震荡变化。(2)在加载过程中,压密程度及裂纹扩展方向对波速产生了巨大的影响,导致不同方向波速在不同的应力水平呈现出不同的变化规律,由此可以推测破裂面位置和破裂模式。在较高应力水平下(约60%峰值强度),平行于加载方向的波速趋于稳定,而垂直于加载方向的波速则持续下降,故用垂直于加载方向传播的波速预测岩石的破坏更具可靠性。(3)随着应力的增加,应变速率有逐渐减小的趋势,但临近岩石破裂时无异常变化出现,说明利用变形观测难以预测此类岩石的破坏。以上研究表明,根据纵波波速、声发射累计数和切线模量的变化可以有效预测岩石的破坏。  相似文献   

11.
为分析含水率和围压对泥岩峰后力学特性的影响,从山西安家岭矿取泥岩,制成不同含水率的5组试样,在YAW2000电液伺服试验机上开展了三轴试验,获得了不同含水率泥岩试样三轴全程应力应变曲线,使用激光共聚焦显微镜观测了泥岩增水过程中微观结构变化。利用试验结果,分析了围压和含水率对泥岩峰值强度、残余强度、弹性模量、破坏应变和脆性模量的影响规律和泥岩增水过程中微观结构的变化规律。引入脆性模量系数和强度退化指数来描述围压对泥岩峰后强度退化过程和残余强度的影响,与FLAC中的SS模型结合,建立了考虑围压影响的泥岩应变软化力学模型,模拟了围压对泥岩应变软化行为的影响。研究结果表明:(1)随着围压增加,泥岩的峰值强度、偏应力峰值、破坏应变和残余强度都增长,峰后强度降低速率趋缓,强度退化指数和脆性模量系数可以较好地描述围压对泥岩残余强度和峰后强度退化过程的影响。(2)泥岩增水过程中,岩样内微裂隙及尺寸增长,泥岩的力学性质劣化。随着含水率增加,泥岩的弹性模量、峰值强度和残余强度降低,破坏应变增长。含水率与泥岩的弹性模量、峰值强度和破坏应变之间近似服从线性关系。(3)本文基于脆性模量系数的岩石应变软化模型能较好地描述三轴压缩泥岩的全程变形行为。  相似文献   

12.
以南京长江三桥地基中的泥岩为对象,对泥岩进行三轴试验。试验结果表明:随着侧压的增大,破坏荷载增大,塑性变形明显增大,岩石破坏后,残余强度随侧压增大而提高。在此基础上研究分析了泥岩微元强度服从Weibull分布,泥岩微元体破坏服从莫尔-库仑岩石强度判据时的损伤软化参数与围压的关系特征。结合岩石破裂过程应力 应变全过程曲线,讨论了初始损伤特性,分析结果表明:泥岩初始损伤时的主应力差对数随围压增大而增大,两者呈线性关系; 分析了泥岩损伤变量随主应力差变化关系,结果表明泥岩损伤变量与主应力差呈双曲线数学关系,通过对双曲线模型作线性化处理,结合试验数据采用回归分析法确定模型参数,分析结果发现F 0随围压的增大而增大,而m则随压的增大而减小,反映泥岩随围压的增大,脆性度降低。  相似文献   

13.
考虑裂隙间相互作用情况下围压卸荷过程应力应变关系   总被引:5,自引:0,他引:5  
岩体的稳定性和变形特性主要决定于裂隙,同时裂隙间的相互作用对岩体的稳定和变形产生显著的影响。裂隙岩体在加载和卸荷条件下的力学特性有显著的区别。为此本文首次利用位错模型法结合叠加原理研究在围压卸荷条件下裂隙间的相互作用对岩体的变形的影响问题。文中推导了考虑裂隙间的相互作用情况下裂隙岩体围压卸荷过程的应力应变关系及应力强度因子表达式,且进行了数值计算。  相似文献   

14.
A discrete element method (DEM) called particle flow code (PFC2D) was used to construct a model for Brazilian disc splitting test in the present study. Based on the experimental results of intact Brazilian disc of rock-like material, a set of micro-parameters in PFC2D that reflected the macro-mechanical behavior of rock-like materials were obtained. And then PFC2D was used to simulate Brazilian splitting test for jointed rock mass specimens and specimen containing a central straight notch. The effect of joint angle and notch angle on the tensile strength and failure mode of jointed rock specimens was detailed analyzed. In order to reveal the meso-mechanical mechanism of crack coalescence, displacement trend lines were applied to analyze the displacement evolution during the crack initiation and propagation. The investigated conclusions can be described as follows. (1) The tensile strength of jointed rock mass disc specimen is dependent to the joint angle. As the joint angle increases, the tensile strength of jointed rock specimen takes on a nonlinear variance. (2) The tensile strength of jointed rock mass disc specimen containing a central straight notch distributes as a function of both joint angle and notch angle. (3) Three major failure modes, i.e., pure tensile failure, shear failure and mixed tension and shear failure mode are observed in jointed rock mass disc specimens under Brazilian test. (4) The notch angle roles on crack initiation and and joint angle play important propagation characteristics of jointed rock mass disc specimen containing a central straight notch under Brazilian test.  相似文献   

15.
为了明确岩石破坏的能量演化特性,结合单轴实验和颗粒流程序获得花岗岩的细观力学参数,进行不同应力状态的花岗岩实验,研究不同围压下花岗岩破坏过程的能量演化机理并推导能量屈服准则。获得以下主要结论:花岗岩破坏过程中低围压下内部损伤出现较早而高围压较晚,表明低围压花岗岩内部损伤是渐进发展过程,而高围压下内部损伤一旦出现便快速发展破坏;高围压花岗岩峰值前一定应变范围弹性应变能基本保持不变,吸收的能量全部转化为耗散能,表明高围压破坏时花岗岩内部损伤程度严重;弹性应变能经历不断积累并达到弹性储能极限而后减小的变化过程,而弹性储能极限与围压之间存在线性变化规律,因此高围压下岩体开挖卸荷时极易诱发大量弹性应变能的急剧释放,引起围岩失稳甚至发生岩爆;花岗岩峰值破坏时的能量比与围压无关,为一定值;基于能量原理导出了能量屈服准则,该准则包含岩性参数和所有主应力,能够综合反映岩石破坏影响因素。  相似文献   

16.
A micro-mechanics-based model is developed to investigate microcrack damage mechanism of four stages of brittle rock under rotation of the principal stress axes. They consist of linear elastic, non-linear hardening, rapid stress drop and strain softening. The frictional sliding crack model is applied to analyze microcracks nucleation, propagation and coalescence. The strain energy density factor approach is applied to determine the critical condition of microcrack nucleation, propagation and coalescence. The inelastic strain increments are formulated within the framework of thermodynamics with internal variables. Rotation of principal stress axes affect the dynamic damage constitutive relationship and the failure strength of brittle rock.  相似文献   

17.
岩体的破坏主要是岩体中裂纹的扩展与贯通的结果.受压岩体的裂纹尖端,可能处于压剪状态,也可能处于拉剪状态.从断裂力学的角度,研究了地下工程围岩中的裂纹在各种受力条件下(包括拉剪、压剪两种情况)的起裂、扩展及贯通以至最终形成劈裂裂缝的特征及各个阶段的判据.针对压剪断裂,裂纹之间存在有粘结力与摩擦强度的特征,提出了岩石压剪断裂性判据.最后以受压岩体中的斜裂纹扩展过程分析为例,模拟了岩体中裂纹逐渐发展成劈裂破坏的过程,并说明了各个阶段的计算方法.  相似文献   

18.
基于冬瓜山铜矿深部巷道围岩开挖过程中面临的高应力和频繁爆破扰动问题,利用改进的SHPB动静组合加载系统,开展了频繁动力扰动对围压卸载中高储能岩体动力学影响的研究。研究结果表明,围压卸载中的矽卡岩受到动力扰动时,其动态峰值应力和弹性模量随动力扰动次数非线性变化。围压卸载中的高储能矽卡岩受到动力扰动时会释放能量。轴压促使岩样内微裂隙轴向发育,造成岩样抵抗动力扰动能力减弱;围压减缓岩样内微裂隙轴向发育,造成岩样抵抗动力扰动能力增强。动力扰动对微裂隙扩展有促进作用,使围压卸载中的岩样由拉伸破坏向剪切破坏转变。  相似文献   

19.
不同应变率下煤岩破坏特征及其本构模型   总被引:1,自引:0,他引:1  
郑钰  施浩然  刘晓辉  张文举 《爆炸与冲击》2021,41(5):053103-1-053103-13
利用直径50 mm的分离式霍普金森压杆,对煤岩展开20~100 s?1动态应变率下的单轴冲击压缩试验,结合高速摄影分析其变形破坏特征,并建立基于Weibull统计分布和Drucker-Prager破坏准则的煤岩动态强度型统计损伤本构模型。试验结果表明:(1)煤岩动态应力-应变曲线存在明显的非线性特征,随应变率升高,动态抗压强度与弹性模量均呈线性增长且增幅显著,破坏形态由低应变率下的轴向劈裂破坏向高应变率下的压碎破坏过渡;(2)在动态应变率20~100 s?1下,煤岩破坏后碎块具有明显的分形特性,破碎块度分维值为1.9~2.2,且随着应变率的升高,煤岩破碎程度增大,碎块块度减小;(3)基于Weibull分布参数F0、m和应变率的关系,修正煤岩的本构模型,并与试验结果进行对比,验证该模型的合理性。  相似文献   

20.
为了解喀喇昆仑公路(中国段)沿线岩石裂纹演化及受力后的力学性能(位移和应变),采用数字图像相关技术,对三点弯曲加载条件下的灰白石英粉砂岩和片麻岩试件在万能试验机上进行了破坏实验,得到了外力作用下裂纹生成、扩展等演化过程及两种岩样在加载直至破坏过程中的位移场和平均应变曲线.实验结果表明,在相同条件下,灰白石英粉砂岩比片麻岩更易脆断,片麻岩在受力断裂破坏时出现了多条裂纹,导致试件加剧断裂,研究成果为了解这一地域的岩石强度及破坏规律提供了实验依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号