首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measurements of the unsteady flow structure and force time history of pitching and plunging SD7003 and flat plate airfoils at low Reynolds numbers are presented. The airfoils were pitched and plunged in the effective angle of attack range of 2.4°–13.6° (shallow-stall kinematics) and ?6° to 22° (deep-stall kinematics). The shallow-stall kinematics results for the SD7003 airfoil show attached flow and laminar-to-turbulent transition at low effective angle of attack during the down stroke motion, while the flat plate model exhibits leading edge separation. Strong Re-number effects were found for the SD7003 airfoil which produced approximately 25 % increase in the peak lift coefficient at Re = 10,000 compared to higher Re flows. The flat plate airfoil showed reduced Re effects due to leading edge separation at the sharper leading edge, and the measured peak lift coefficient was higher than that predicted by unsteady potential flow theory. The deep-stall kinematics resulted in leading edge separation that led to formation of a large leading edge vortex (LEV) and a small trailing edge vortex (TEV) for both airfoils. The measured peak lift coefficient was significantly higher (~50 %) than that for the shallow-stall kinematics. The effect of airfoil shape on lift force was greater than the Re effect. Turbulence statistics were measured as a function of phase using ensemble averages. The results show anisotropic turbulence for the LEV and isotropic turbulence for the TEV. Comparison of unsteady potential flow theory with the experimental data showed better agreement by using the quasi-steady approximation, or setting C(k) = 1 in Theodorsen theory, for leading edge–separated flows.  相似文献   

2.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

3.
A laminar separation bubble occurs on the suction side of the SD7003 airfoil at an angle of attack α =  4–8° and a low Reynolds number less than 100,000, which brings about a significant adverse aerodynamic effect. The spatial and temporal structure of the laminar separation bubble was studied using the scanning PIV method at α =  4° and Re = 60,000 and 20,000. Of particular interest are the dynamic vortex behavior in transition process and the subsequent vortex evolution in the turbulent boundary layer. The flow was continuously sampled in a stack of parallel illuminated planes from two orthogonal views with a frequency of hundreds Hz, and PIV cross-correlation was performed to obtain the 2D velocity field in each plane. Results of both the single-sliced and the volumetric presentations of the laminar separation bubble reveal vortex shedding in transition near the reattachment region at Re = 60,000. In a relatively long distance vortices characterized by paired wall-normal vorticity packets retain their identities in the reattached turbulent boundary layer, though vortices interact through tearing, stretching and tilting. Compared with the restricted LSB at Re = 60,000, the flow at Re = 20,000 presents an earlier separation and a significantly increased reversed flow region followed by “huge” vortical structures.  相似文献   

4.
Large Eddy Simulation of the bubble bursting process over a NACA-0012 airfoil at $Re_{c}=10^{5}$ indicates that the flow at a fixed angle of attack below the critical stall value exhibits a short (with respect to Gaster’s criteria, Gaster, Number CP-4 in AGARD, 1966) Laminar Separation Bubble (LSB) at the leading edge of the airfoil. The airfoil is smoothly pitched-up through the static stall angle to reproduce the bursting process of the short LSB that initiates a leading edge stall typical of low Reynolds number airfoil. The temporal evolution of characteristic length scales is monitored during the transient flow. Particular attention is paid to the characteristic time involved during the growth and bursting of the LSB. A recent empirical bursting criterion is used to analyse the LES results.  相似文献   

5.

A high-order low dissipative numerical framework is discussed to tackle simultaneously the modeling of unresolved sub-grid scale flow turbulence and the capturing of shock waves. The flows around two different airfoil profiles are simulated using a Spectral Difference discretisation scheme. First, a transitional, almost incompressible, low Reynolds number flow over a Selig-Donovan 7003 airfoil. Second, a high Reynolds number flow over a RAE2822 airfoil under transonic conditions. These flows feature both laminar and turbulent flow physics and are thus particularly challenging for turbulence sub-grid scale modeling. The accuracy of the recently developed Spectral Element Dynamic Model, specifically capable of detecting spatial under-resolution in high-order flow simulations, is evaluated. Concerning the test in transonic conditions, the additional complexity due to the presence of shock waves has been handled using an artificial viscosity shock-capturing technique based on bulk viscosity. To mitigate the impact of the shock-capturing on turbulence dissipation, it was necessary to combine the high-order modal-type shock detection with a usual sensor measuring the local flow compressibility.

  相似文献   

6.
A computational study of a high‐fidelity, implicit large‐eddy simulation (ILES) technique with and without the use of the dynamic Smagorinsky subgrid‐scale (SGS) model is conducted to examine the contributions of the SGS model on solutions of transitional flow over the SD7003 airfoil section. ILES without an SGS model has been shown in the past to produce comparable and sometimes favorable results to traditional SGS‐based large‐eddy simulation (LES) when applied to canonical turbulent flows. This paper evaluates the necessity of the SGS model for low‐Reynolds number airfoil applications to affirm the use of ILES without SGS‐modeling for a broader class of problems such as those pertaining to micro air vehicles and low‐pressure turbines. It is determined that the addition of the dynamic Smagorinsky model does not significantly affect the time‐mean flow or statistical quantities measured around the airfoil section for the spatial resolutions and Reynolds numbers examined in this study. Additionally, the robustness and reduced computational cost of ILES without the SGS model demonstrates the attractiveness of ILES as an alternative to traditional LES. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

7.
Low-Reynolds-number aerodynamic performance of small-sized air vehicles is an area of increasing interest. In this study, low-Reynolds-number flows past an SD7003 airfoil are investigated to understand important viscous features of laminar separation and transitional flow followed by the complicated behavior of the flow reattachment process. In order to satisfy the three-dimensional (3D) requirement of the code, a simple “3D wing” is constructed from a two-dimensional (2D) airfoil. A parametric study of large eddy simulation (LES) on the airfoil flows at Re = 60,000 is performed. Effects of grid resolution and sub-grid scale (SGS) models are investigated. Although 3D effects cannot be accurately captured owing to the limitation of the grid resolution in the spanwise direction, the preliminary LES calculations do reveal some important flow characteristics such as leading-edge laminar separation and vortex shedding from the primary laminar separation bubble on the low-Reynolds-number airfoil.  相似文献   

8.
Scanning PIV is applied to a laminar separation bubble to investigate the spanwise structure and dynamics of the roll-up of vortices within the bubble. The laminar flow separation with turbulent reattachment is studied on the suction side of an airfoil SD7003 at Reynolds numbers of 20,000–60,000. The flow is recorded with a CMOS high-speed camera in successive light-sheet planes over a time span of 1–2 s to resolve the temporal evolution of the flow in the different planes. The results show the quasi-periodic development of large vortex-rolls at the downstream end of the separation bubble, which have a convex structure and an extension of 10–20% chord length in the spanwise direction. These vortices possess an irregular spanwise pattern. The evolution process of an exemplary vortex structure is shown in detail starting from small disturbances within the separation bubble transforming into a compact vortex at the downstream end of the separation bubble. As the vortex grows in size and strength it reaches a critical state that leads to an abrupt burst of the vortex with a large ejection of fluid into the mean flow.  相似文献   

9.
The present paper is concerned with numerical investigations on the effect of inflow turbulence on the flow around a SD7003 airfoil. At a Reynolds number Rec =?60,000, an angle of attack α =?4° and a low or zero turbulence intensity of the oncoming flow, the flow past the airfoil is known to be dominated by early separation, subsequent transition and reattachment leading to a laminar separation bubble with a distinctive pressure plateau. The objective of the study is to investigate the effect of inflow turbulence on the flow behavior. For this purpose, a numerical methodology relying on a wall-resolved large-eddy simulation, a synthetic turbulence inflow generator and a specific source term concept for introducing the turbulence fluctuations within the computational domain is used. The numerical technique applied allows the variation of the free-stream turbulence intensity (TI) in a wide range. In order to analyze the influence of TI on the arising instantaneous and time-averaged flow field past the airfoil, the present study evaluates the range 0%TI ≤?11.2%, which covers typical values found in atmospheric boundary layers. In accordance with experimental studies it is shown that the laminar separation bubble first shrinks and finally completely vanishes for increasing inflow turbulence. Consequently, the aerodynamic performance in terms of the lift-to-drag ratio increases. Furthermore, the effect of the time and length scales of the isotropic inflow turbulence on the development of the flow field around the airfoil is analyzed and a perceptible influence is found. Within the range of inflow scales studied decreasing scales augment the receptivity of the boundary layer promoting an earlier transition.  相似文献   

10.
对称翼型低雷诺数小攻角升力系数非线性现象研究   总被引:12,自引:0,他引:12  
采用Rogers发展的三阶Roe格式,求解非定常不可压N-S方程,时间方向为二阶精度双时间步方法, 数值模拟了对称翼型SD8020低雷诺数(Re=40000,100000)条件下,流场层流分离涡结构和升力系数随攻角的变化.同试验比较证明了数值模拟的正确性.通过对数值模拟时均化流场结果的详细分析,发现对称翼型在小雷诺数0°攻角附近出现的层流分离泡,其内部结构和演化规律都不同于经典层流分离泡模型,从而提出了一种后缘层流分离泡模型.并应用该模型对对称翼型小攻角低雷诺数流场特性以及升力系数非线性效应的形成机理进行了研究和解释.  相似文献   

11.
To comprehensively understand the effects of Kelvin–Helmholtz instabilities on a transitional separation bubble on the suction side of an airfoil regarding as to flapping of the bubble and its impact on the airfoil performance, the temporal and spatial structure of the vortices occurring at the downstream end of the separation bubble is investigated. Since the bubble variation leads to a change of the pressure distribution, the investigation of the instantaneous velocity field is essential to understand the details of the overall airfoil performance. This vortex formation in the reattachment region on the upper surface of an SD7003 airfoil is analyzed in detail at different angles of attack. At a Reynolds number Re c < 100,000 the laminar boundary layer separates at angles of attack >4°. Due to transition processes, turbulent reattachment of the separated shear layer occurs enclosing a locally confined recirculation region. To identify the location of the separation bubble and to describe the dynamics of the reattachment, a time-resolved PIV measurement in a single light-sheet is performed. To elucidate the spatial structure of the flow patterns in the reattachment region in time and space, a stereo scanning PIV set-up is applied. The flow field is recorded in at least ten successive light-sheet planes with two high-speed cameras enclosing a viewing angle of 65° to detect all three velocity components within a light-sheet leading to a time-resolved volumetric measurement due to a high scanning speed. The measurements evidence the development of quasi-periodic vortex structures. The temporal dynamics of the vortex roll-up, initialized by the Kelvin–Helmholtz (KH) instability, is shown as well as the spatial development of the vortex roll-up process. Based on these measurements a model for the evolving vortex structure consisting of the formation of c-shape vortices and their transformation into screwdriver vortices is introduced.  相似文献   

12.
Izquierdo  David O. D.  Marques  Flávio D. 《Meccanica》2021,56(11):2671-2689

Technologies inspired by the functioning and behavior of biological beings are commonly developed for aircraft flight. Among the bio-inspired approaches that have grown in interest, particularly for unmanned aerial vehicle flight, is based on the behavior of bird’s cover feathers under higher angles of attack. The covert feathers, when activated by separated flows, promote lift increment that helps in certain maneuvers. This work investigates the benefit in the stall and post-stall performance of employing bio-inspired covert feathers devices attached to an airfoil’s upper surface. To fill the gaps in the recent technical literature, experimental analysis of an SD7003 airfoil was executed in a wind tunnel with the application of bio-inspired covert feathers of different shapes and tapes in three chordwise positions. The bio-inspired devices were conceived to resemble the feathers’ lightness and discrete-distribution along with the wing model. Experiments were carried out measuring the aerodynamic forces and moment at Reynolds number around 170,000 for static and dynamic ramp-up and hold pitching motion. It has been confirmed that the use of bio-inspired covert feathers brought benefits to the stall and post-stall behavior of the airfoil. The maximum lift has increased, and the transition from attached to stalled flow around the airfoil tends to be smoother when the devices were used. Four shapes for the bio-inspired devices and three positions in chordwise direction were considered. The best performance among the case was encountered for a jagged bio-inspired device taped at a quarter-chord position. Indeed, the most forward position for all the devices resulted in higher maximum lift and increment to the respective angle of attack. Ramp-up and hold wind tunnel tests also confirmed the best performance of jagged bio-inspired devices nearer the leading edge. The aerodynamic response to the pitching motion showed that the stall and post-stall regime occur much smoother, indicating that the approach presents good potential for dynamic stall or gust response passive control.

  相似文献   

13.
High-fidelity numerical simulations with the spectral difference (SD) method are carried out to investigate the unsteady flow over a series of oscillating NACA 4-digit airfoils. Airfoil thickness and kinematics effects on the flapping airfoil propulsion are highlighted. It is confirmed that the aerodynamic performance of airfoils with different thickness can be very different under the same kinematics. Distinct evolutionary patterns of vortical structures are analyzed to unveil the underlying flow physics behind the diverse flow phenomena associated with different airfoil thickness and kinematics and reveal the synthetic effects of airfoil thickness and kinematics on the propulsive performance. Thickness effects at various reduced frequencies and Strouhal numbers for the same chord length based Reynolds number (=1200) are then discussed in detail. It is found that at relatively small Strouhal number (=0.3), for all types of airfoils with the combined pitching and plunging motion (pitch angle 20°, the pitch axis located at one third of chord length from the leading edge, pitch leading plunge by 75°), low reduced frequency (=1) is conducive for both the thrust production and propulsive efficiency. Moreover, relatively thin airfoils (e.g. NACA0006) can generate larger thrust and maintain higher propulsive efficiency than thick airfoils (e.g. NACA0030). However, with the same kinematics but at relatively large Strouhal number (=0.45), it is found that airfoils with different thickness exhibit diverse trend on thrust production and propulsive efficiency, especially at large reduced frequency (=3.5). Results on effects of airfoil thickness based Reynolds numbers indicate that relative thin airfoils show superior propulsion performance in the tested Reynolds number range. The evolution of leading edge vortices and the interaction between the leading and trailing edge vortices play key roles in flapping airfoil propulsive performance.  相似文献   

14.
An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C  = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C  < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.  相似文献   

15.
Large-eddy simulation (LES) is employed to investigate the use of plasma-based actuation for the control of a vortical gust interacting with a wing section at a low Reynolds number. Flow about the SD7003 airfoil section at 4° angle of attack and a chord-based Reynolds number of 60,000 is considered in the simulation, which typifies micro air vehicle (MAV) applications. Solutions are obtained to the Navier–Stokes equations that were augmented by source terms used to represent body forces imparted by the plasma actuator on the fluid. A simple phenomenological model provided these body forces resulting from the electric field generated by the plasma. The numerical method is based upon a high-fidelity time-implicit scheme and an implicit LES approach which are used to obtain solutions on a locally refined overset mesh system. A Taylor-like vortex model is employed to represent a gust impinging upon the wing surface, which causes a substantial disruption to the undisturbed flow. It is shown that the fundamental impact of the gust on unsteady aerodynamic forces is due to an inviscid process, corresponding to variation in the effective angle of attack, which is not easily overcome. Plasma control is utilised to mitigate adverse effects of the interaction and improve aerodynamic performance. Physical characteristics of the interaction are described, and several aspects of the control strategy are explored. Among these are uniform and non-uniform spanwise variations of the control configuration, co-flow and counter-flow orientations of the directed force, pulsed and continuous operations of the actuator and strength of the plasma field. Results of the control situations are compared with regard to their effect upon aerodynamic forces. It was found that disturbances to the moment coefficient produced by the gust can be greatly reduced, which may be significant for stability and handling of MAV operations.  相似文献   

16.
满足几何守恒律的WENO格式及其应用   总被引:1,自引:0,他引:1  
对几何守恒律的来源进行了分析,发展了一种满足几何守恒律的WENO格式,并应用于翼型层流分离现象的数值模拟中。为消除网格质量影响,采用守恒型方法计算网格导数,并将标准的WENO格式分解为中心差分部分和数值耗散部分。算例计算结果表明,几何守恒律对高精度有限差分WENO格式计算结果具有重要影响,本文方法能够消除网格导数计算误差,保证来流保持性。将本文方法应用于SD7003翼型层流分离现象的数值模拟中,计算结果与文献中计算及试验数据吻合较好,同时能够精细捕捉小尺度流场结构,准确模拟翼型层流分离现象中的复杂流动过程。  相似文献   

17.
In this paper, we investigate the accuracy and efficiency of discontinuous Galerkin spectral method simulations of under‐resolved transitional and turbulent flows at moderate Reynolds numbers, where the accurate prediction of closely coupled laminar regions, transition and developed turbulence presents a great challenge to large eddy simulation modelling. We take full advantage of the low numerical errors and associated superior scale resolving capabilities of high‐order spectral methods by using high‐order ansatz functions up to 12th order. We employ polynomial de‐aliasing techniques to prevent instabilities arising from inexact quadrature of nonlinearities. Without the need for any additional filtering, explicit or implicit modelling, or artificial dissipation, our high‐order schemes capture the turbulent flow at the considered Reynolds number range very well. Three classical large eddy simulation benchmark problems are considered: a circular cylinder flow at ReD=3900, a confined periodic hill flow at Reh=2800 and the transitional flow over a SD7003 airfoil at Rec=60,000. For all computations, the total number of degrees of freedom used for the discontinuous Galerkin spectral method simulations is chosen to be equal or considerably less than the reported data in literature. In all three cases, we achieve an equal or better match to direct numerical simulation results, compared with other schemes of lower order with explicitly or implicitly added subgrid scale models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The Lagrangian vortex method for solving the Navier-Stokes equations is applied for numerically modeling the unsteady flow past a wing airfoil executing angular oscillations in a viscous incompressible flow. Formulas relating the unsteady forces on the airfoil and the vorticity field are derived. The calculated results are compared with the experimental data for the NACA-0012 airfoil executing harmonic oscillations in an air flow at the Reynolds number Re = 4.4 × 104.  相似文献   

19.
We investigate implicit large eddy simulation of the Taylor–Green vortex, Comte‐Bellot–Corrsin experiment, turbulent channel flow and transitional and turbulent flow over an SD7003 airfoil using the high‐order unstructured correction procedure via reconstruction (CPR) scheme, also known as the flux reconstruction scheme. We employ P1 (second‐order) to P5 (sixth‐order) spatial discretizations. Results show that the CPR scheme can accurately predict turbulent flows without the addition of a sub‐grid scale model. Numerical dissipation, concentrated at the smallest resolved scales, is found to filter high‐frequency content from the solution. In addition, the high‐order schemes are found to be more accurate than the low‐order schemes on a per degree of freedom basis for the canonical test cases we consider. These results motivate the further investigation and use of the CPR scheme for simulating turbulent flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Three-dimensional velocity fields were measured using tomographic particle image velocimetry (Tomo-PIV) on a model of the blade of a small-scale horizontal axis wind turbine (HAWT) to study the effects of rotation on separated turbulent flows during stall delay at a global tip speed ratio (TSR) of 3 and a Reynolds number of 4800. The flow fields on a static airfoil were also measured at a similar angle-of-attack (AOA) and Reynolds number for comparison. It was observed that the blade’s rotation in the streamwise direction significantly affected both the mean flow and the turbulence statistics over the suction surface. The mean velocity fields revealed that, different from the airfoil flow at large AOA, the recirculation region with reversed flow did not exist on the suction surface of the blade and the flow was rather attached. Mean spanwise flow from blade’s root to its tip was also generated by the rotation. The mean vorticity vector of the blade flow was found to be tilted in the rotational direction of the blade, as well as in the wall-normal direction. Of particular effects of the rotation on Reynolds stresses were the enhancement of 〈w 2〉 and the creation of strong 〈v w〉. The production of Reynolds stresses was also affected by blade’s rotation directly through the rotational production terms and indirectly by dramatically changing the fluctuating velocity fields. The distribution of enstrophy was observed to be modified by rotation, too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号