首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 285 毫秒
1.
杜冰  王璠  刘人怀  卢迎华 《力学与实践》2006,28(4):46-50,59
网壳结构在大跨度结构中得到广泛应用.在建立了双层网格扁球壳的非线性强迫振动微分方程的基础上,研究了在边缘滑动固定的边界条件下,双层网格扁球壳的非线性动态响应问题.用突变理论建立了该网壳的尖点突变模型,得出了突变的临界方程,并阐述了网壳参数对该结构动态屈曲的影响.  相似文献   

2.
Based on the elasto-plastic mechanics, the damage analysis and dynamic response of an elasto-plastic laminated composite shallow spherical shell under low velocity impact are carried out in this paper. Firstly, a yielding criterion related to spherical tensor of stress is proposed to model the mixed hardening orthotropic material, and accordingly an incremental elasto-plastic damage constitutive relation for the laminated shallow spherical shell is founded when a strain-based Hashin failure criterion is applied to assess the damage initiation and propagation. Secondly, using the presented constitutive relations and the classical nonlinear shell theory, a series of incremental nonlinear motion equations of orthotropic moderately thick laminated shallow spherical shell are obtained. The questions are solved by using the orthogonal collocation point method, Newmark method and iterative method synthetically. Finally, a modified elasto-plastic contact law is developed to determine the normal contact force and the effect of damage, geometrical parameters, elasto-plastic contact and boundary conditions on the contact force and the dynamic response of the structure under low velocity impact are investigated.  相似文献   

3.
Summary In this paper, a model of cusped catastrophe at nonlinear dynamic buckling of a symmetrically laminated cylindrically orthotropic shallow spherical shell is presented. The shell is subjected to an axisymmetrical load. Effects of transverse shear are taken into account. Effects of the shear modulus, geometry and parameters of the material on the nonlinear dynamic buckling are discussed. Received 2 April 1997; accepted for publication 27 November 1997  相似文献   

4.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells  相似文献   

5.
Based on the nonlinear theory of shallow spherical thick shells and the damage mechanics, a set of nonlinear equations of motion for the laminated shallow spherical thick shells with damage subjected to a normal concentrated load on the top are established. According to Hertz law, the contact force acted upon the shells is determined due to the impact of a mass, and it is related to the mass and initial velocity of the striking object, the geometrical and physical character of the shell. By using the finite difference method and the time increment procedure, the nonlinear equations are resolved. In the numerical examples, the effects of the damage, the initial velocity, and mass of the striking object, the shells’ geometrical parameters on the dynamic responses and dynamic buckling of the laminated shallow spherical thick shells are discussed. Research of Y. Fu, Z. Gao and F. Zhu was supported by National Natural Science Foundation of China (No. 10572049).  相似文献   

6.
爆炸冲击下复合材料层合扁球壳的动力屈曲   总被引:1,自引:0,他引:1  
研究计及横向剪切的复合材料层合扁球壳在爆炸冲击载荷作用下的非线性轴对称动力屈曲问题。通过在复合材料层合扁球壳非线性稳定性的基本方程中增加横向转动惯量项并引入R.H.Cole理论的爆炸冲击力,得到爆炸冲击下复合材料层合扁球壳的动力控制方程,应用Galerkin方法得到用顶点挠度表达的爆炸冲击动力响应方程,并采用Runge-Kutta方法进行数值求解,采用Budiansky-Roth准则确定冲击屈曲的临界载荷,讨论了壳体几何尺寸对复合材料层合扁球壳冲击屈曲的影响;数值算例表明,此方法是可行的。  相似文献   

7.
本文从扁球壳的积分方程组出发,通过新定义的残差表达式,用权余法详细地研究了扁球壳轴对称非线性弯曲和稳定问题.通过数值计算可以看出,本方法应用方便,精确可靠.  相似文献   

8.
The problem of snap-through buckling of a clamped, eccentrically stiffened shallow spherical cap is considered under quasi-statically applied uniform pressure and a special case of dynamically applied uniform pressure. This dynamic case is the constant load infinite duration case (step time-function) and it represents an extreme case of blast loading-large decay time, small decay rate.The analysis is based on the nonlinear shallow shell equations under the assumption of axisymmetric deformations and linear stress-strain laws. The eccentric stiff eners are disposed orthogonally along directions of principal curvature in such a way that the smeared mass, and extensional and flexural stiffnesses are constant. The stiffeners are also taken to be one-sided with constant eccentricity, and the stiffener-shell connection is assumed to be monolithic.The method developed in an earlier paper is employed. In this method, critical pressures are associated with characteristics of the total potential surface in the configuration space of the generalized coordinates.In addition, buckling of the complete thin eccentrically stiffened spherical shell under uniform quasi-statically applied pressure is considered, and these results are used to check the numerical answers. The complete spherical shell is stiffened in the same manner as the shallow cap.The results are presented in graphical form as load parameter vs initial rise parameter. Geometric configurations corresponding to isotropic, lightly stiffened, moderately stiffened and heavily stiffened geometries are considered. By lightly stiffened geometry one means that most of the extensional stiffness is provided by the thin shell. A computer program was written to solve for critical pressures. The Georgia Tech Univac 1108 high speed digital computer was used for this purpose.  相似文献   

9.
Based on the variational equation of the nonlinear bending theory of doubledeck reticulated shallow shells, equations of large deflection and boundary conditions for a double-deck reticulated circular shallow spherical shell under a uniformly distributed pressure are derived by using coordinate transformation means and the principle of stationary complementary energy. The characteristic relationship and critical buckling pressure for the shell with two types of boundary conditions are obtained by taking the modified iteration method. Effects of geometrical parameters on the buckling behavior are also discussed.  相似文献   

10.
By using the fundamental equations of axisymmetric shallow shells of revolution, the nonlinear bending of a shallow corrugated shell with taper under arbitrary load has been investigated. The nonlinear boundary value problem of the corrugated shell was reduced to the nonlinear integral equations by using the method of Green's function. To solve the integral equations, expansion method was used to obtain Green's function. Then the integral equations were reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral equations become nonlinear algebraic equations. Newton' s iterative method was utilized to solve the nonlinear algebraic equations. To guarantee the convergence of the iterative method, deflection at center was taken as control parameter. Corresponding loads were obtained by increasing deflection one by one. As a numerical example,elastic characteristic of shallow corrugated shells with spherical taper was studied.Calculation results show that characteristic of corrugated shells changes remarkably. The snapping instability which is analogous to shallow spherical shells occurs with increasing load if the taper is relatively large. The solution is close to the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号