首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A technique for determining the heat transfer on the far surface of a wall based on measuring the heat flux and temperature on the near wall is presented. Although heat transfer measurements have previously been used to augment temperature measurements in inverse heat conduction methods, the sensors used alter the heat flow through the surface, disturbing the very quantity that is desired to be measured. The ideal sensor would not alter the boundary condition that would exist were the sensor not present. The innovation of this technique in that it has minimal impact on the wall boundary condition. Since the sensor is placed on the surface of the wall, no alteration of the wall is needed. The theoretical basis for the experimental technique as well as experimental results showing the heat flux sensor performance is presented.  相似文献   

2.
Heat transfer in a film flow of the FC-72 dielectric liquid down a vertical surface with an embedded 150×150 mm heater is experimentally examined in the range of Reynolds numbers Re = 5–375. A chart of liquid-film flow modes is constructed, and characteristic heat-transfer regions are identified. Data on the dependence of heater-wall temperature and local heat flux at the axis of symmetry of the heater on the longitudinal coordinate are obtained. Local and mean heat-transfer coefficients are calculated. It is shown that enhanced heat transfer is observed in the region where rivulets starts forming in the low-Reynolds-number liquid-film flow.  相似文献   

3.
Combustion of methane-rich fuels frequently provides forced convective heating in industry, and the ability to predict the rate of heat transfer from such flames to solid surfaces is often desirable. Mathematical modelling of stagnation point heat flux has been achieved by numerical solution of the boundary layer equations, and by an analytical equation modified to include the effects of chemical reaction in the free stream flow and to allow for the enhancement in heat flux caused by the diffusion and exothermic recombination of reactive species in the boundary layer surrounding the heat receiving body. Predictions from these models have been compared with experimental data obtained in high temperature methane flames of various equivalence ratios. Within the equilibrium region of these flames, predictions from the modified analytical equation based on total Lewis numbers equal to and greater than one form a tight envelope around the experimental results, and hence provide a relatively simple method of predicting heat flux. Numerical solutions tend to slightly underestimate predictions from the analytical equation and experimental data, although agreement with the alternative prediction method increases with the surface temperature of the heat receiving body  相似文献   

4.
This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical fea- tures of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.  相似文献   

5.
The high performance and efficiency of modern gas turbines are only possible with temperatures inside the engine exceeding the allowed material temperatures in some areas by several hundred degrees. Therefore effective cooling methods are one of the key factors for the success of these engines. In order to achieve reliable predictions of the heat load of rotor or stator blades numerous research activities were performed to understand the nature of heat transfer in complex unsteady flows. Even numerical methods have made significant progress in recent years detailed experimental data are still necessary for validation and further development of the engines and the design tools. Here a new method to directly measure the heat flux at the material surface and accurately determine the heat transfer coefficienth is presented. The new sensor is based on the anisotropic characteristics of single crystals and allows the determination of the time varying heat flux on the surface of a model turbine airfoil. This feature is of special interest to study the influence of periodically disturbed flow conditions on the heat transfer characteristics of cooled turbine blades. The working principle of an anisotropic heat flux (AHF) sensor is briefly described together with the design of the actual sensor used in this study. Prior to the application of the sensor in a cascade test rig, comprehensive test of the sensor, the electronics and the data acquisition system were performed using a pulsed laser beam as heat source. To test the sensor under realistic conditions a large number of sensor was installed in a test blade and heat transfer measurements were performed in a cascade test rig equipped with a spoke-wheel wake generator. The results showed good agreement in the time mean results compared with standard techniques. Additionally time resolved data could be extracted from the sensor signals providing detailed information on the unsteady heat transfer characteristics and boundary layer development. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Some studies already made have investigated the criterion for onset of convection and heat and mass flow distributions in a porous slab composed of horizontal layers of different materials. This paper reports a study of such criteria for the case where the slab is composed of vertically-aligned strata with different permeabilities and thermal conductivities. This has particular relevance to where blocks of different materials abut in a vertical plane, as well as the case of very narrow highly permeable vertical layers which represent vertical faults in a geological structure. Results indicate that permeability and/or thermal conductivity contrasts between layers can significantly affect the flow pattern and the spatial distribution of the surface heat flux. The concentration of flow in highly permeable faults produces marked irregularities in the heat flow through the surface above them.  相似文献   

7.
This paper considers laminar flow heat transfer in tube assemblies. The main interest is focused on the virtually unexplored cases of heat transfer under conditions of fully-developed flow inclined to the axes of the tubes and of purely transverse developing flow. The limiting cases of purely axial or purely transverse fully-developed flow are also examined. In all cases, the thermal boundary condition on the tubes is constant heat flux. Governing differential equations are expressed in terms of curvilinear-orthogonal coordinates and solved using finite-differences. Results are compared with available theoretical and experimental data. The effect of the transverse component of the flow on the temperature distribution is found to remain very strong even in nearly-axial flows and therefore considerably higher heat transfer coefficients are exhibited by a nearly-axial flow than a purely axial one.  相似文献   

8.
Large eddy simulation (LES) of low Mach num- ber compressible turbulent channel flow with spanwise wall oscillation (SWO) is carried out. The flow field is analyzed with emphases laid on the heat transport as well as its rela- tion with momentum transport. When turbulent coherent structures are suppressed by SWO, the turbulent transports are significantly changed, however the momentum and heat transports change in the same manner, which gives the evi- dence of inherently consistent transport mechanisms between momentum and heat in turbulent boundary layers. The Reynolds analogies of all the flow cases are quite good, which confirms again the fact that the transport mechanisms of momentum and heat are consistent, which gives theoreti- cal support for controlling the wall heat flux control by using the drag reducing techniques.  相似文献   

9.
10.
This paper experimentally investigates flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels each with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow mal-distribution. Flow visualization, flow instability, two-phase pressure drop, and two-phase heat transfer measurements are conducted using the dielectric coolant FC-72 over a range of heat flux from 7.2 to 104.2 kW/m2, mass flux from 99 to 290 kg/m2 s, and exit quality from 0.01 to 0.71. Thermochromic liquid crystals are used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. Flow visualization studies indicate that the observed flow regime is primarily slug. Visual observations of flow patterns in the cross-links demonstrate that bubbles nucleate and grow rapidly on the surface of the cross-links and in the tangential direction at the microchannels’ entrance due to the effect of circulations generated in those regions. The two-phase pressure drop strongly increases with the exit quality, at xe,o < 0.3, and the two-phase frictional pressure drop increases by a factor of 1.6–2 compared to the straight microchannel heat sink. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the dominance of the nucleation boiling mechanism in the cross-link region.  相似文献   

11.
浮力对混合对流流动及换热特性的影响   总被引:1,自引:0,他引:1  
用热线和冷线相结合的技术测量垂直圆管内逆混合对流流体的平均速度、 温度以及它们的脉动. 较详细地研究了浮力对逆混合对流的流动特性和传热特性的影响. 评 估了实验中采用的冷线测量温度补偿速度探头温度敏感的影响. 逆混合对流的传热结果用无 量纲参数Ω (Ω= Grd / Red2 )来表示,其中,基于管道直 径的雷诺数Red变化范围为900~18000, 浮力参数Ω变化范围为 0.004899~0.5047. 研究结果表明,浮力对逆混合对流的换热有强化作用. 随着葛拉晓夫数Grd的增加,温度脉动,流向雷诺正应力和流向温度通量增 大,并且在靠近壁面的流体区域尤其明显. 热线与冷线相结合的技术适合于研究非绝热的流 动测量,可以用于研究浮力对流动和换热特性的影响.  相似文献   

12.
Results are presented of an experimental study of the heat transfer and gas flow on the surface of a semicone and of planar wings with a break in the leading edges at Mach number M=5. It is shown that with the interaction of the gas streams flowing about various portions of the surface of such bodies there may occur local, relatively narrow zones of high or low values of the specific heat flux.Temperature indicating paints were used to measure the heat fluxes, and smearable paints applied to the surface in the form of individual dots were used for flow visualization.  相似文献   

13.
We present a model of heat and mass transfer in an unsaturated zone of sand and silty clay soils, taking into account the effects of temperature gradients on the advective flux, and of the enhancement of thermal conduction by the process of latent heat transfer through vapor flow. The motivation for this study is to supply information for the planned storage of thermal energy in unsaturated soils and for hot waste storage. Information is required on the possibility of significant drying at a hot boundary, as this would reduce the thermal conductivity of a layer adjacent to the boundary and, thus, prevent effective heat transfer to the soil. This study indicates the possibility that the considered system may be unstable, with respect to the drying conditions, with the occurrence of drying depending on the initial and the boundary conditions. An analysis performed for certain boundary conditions of heat transfer and for given soil properties, disregarding the advective flux of energy, indicated that there are initial conditions of water content for which heating will not cause significant drying. Under these conditions, fine soils may be better suited for heat transfer at the hot boundary, due to their higher field capacity, although their heat conduction coefficients at saturation are lower than those of sandy soils. At present, these conclusions are limited to the range of 50–80°C. Potential effects of solute concentration at the hot boundary are indicated.  相似文献   

14.
磁流体流动控制中的磁场配置效率研究   总被引:2,自引:0,他引:2  
陈刚  张劲柏  李椿萱 《力学学报》2008,40(6):752-759
采用数值模拟方法研究了不同磁场空间构型对弹道式再入飞行器基准外形表面热流分布的影响. 计算模型为低磁雷诺数近似下的磁流体力学模型. 数值模拟结果表明两个大小相同、方向不同的磁偶极子对表面热流密度分布的影响存在较大差异,由此指出热流控制应用中磁场配置的效率问题. 随后的磁场详细作用机理分析表明上述差异的原因在于不同空间磁场分布对流动能量转化机制的影响不同. 以此为基础给出了在流动的不同区域,磁场空间分布应遵循的一般性原则.   相似文献   

15.
The present paper studies unsteady temperature fields in growing bodies of spherical shape. The growth occurs due to constant accretion of layers of constant thickness on the surface of the main body. In the general case, the temperature of the accreted material is different from that of the main body, which causes a heat flow on the accretion surface. The solution of the initial boundary-value problem of heat conduction is sought as an expansion in the complete system of eigenfunctions of the differential operator generated by the problem.  相似文献   

16.
An experimental study was conducted on the heat transfer under the condition of constant heat flux and the flow around a circular cylinder with tripping-wires, which were affixed at ± 65° from the forward stagnation point on the cylinder surface. The testing fluid was air and the Reynolds number Red, based on the cylinder diameter, ranged from 1.2 × 104 to 5.2×104. Especially investigated are the interactions between the heat transfer and the flow in the critical flow state, in relation to the static pressure distribution along the cylinder surface and the mean and turbulent fluctuating velocities in the wake. It is found that the heat transfer from the cylinder to the cross flow is in very close connection with the width of near wake.  相似文献   

17.
This article considers the problem of mixed convection stagnation-point flow towards a vertical plate embedded in a porous medium with prescribed surface heat flux. It is assumed that the free stream velocity and the surface heat flux vary linearly from the stagnation point. Using a similarity transformation, the governing system of partial differential equations is transformed into a system of ordinary differential equations, before being solved numerically by a finite-difference method. The features of the flow and the heat transfer characteristics are analyzed and discussed. It is found that dual solutions exist for both buoyancy assisting and opposing flows.  相似文献   

18.
Results are presented of experimental investigations of heat transfer in the neighborhood of the stagnation point in flow of a turbulent gas over bodies. It is assumed that the outer flow is capable of rendering the boundary layer turbulent over the whole body surface, i.e., the hypothesis is invoked that there is a turbulent stagnation point. Using the method of integral relations [1] and the flat plate heat-transfer law, transformed in such a way as to satisfy the heat-transfer conditions at the stagnation point, simple formulas have been obtained for calculating the heat flux.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 177–181, July–August, 1975.  相似文献   

19.
Enhancements of nucleate boiling critical heat flux (CHF) using nanofluids in a pool boiling are well-known. Considering importance of flow boiling heat transfer in various practical applications, an experimental study on CHF enhancements of nanofluids under convective flow conditions was performed. A rectangular flow channel with 10-mm width and 5-mm height was used. A 10 mm-diameter disk-type copper surface, heated by conduction heat transfer, was placed at the bottom surface of the flow channel as a test heater. Aqueous nanofluids with alumina nanoparticles at the concentration of 0.01% by volume were investigated. The experimental results showed that the nanofluid flow boiling CHF was distinctly enhanced under the forced convective flow conditions compared to that in pure water. Subsequent to the boiling experiments, the heater surfaces were examined with scanning electron microscope and by measuring contact angle. The surface characterization results suggested that the flow boiling CHF enhancement in nanofluids is mostly caused by the nanoparticles deposition of the heater surface during vigorous boiling of nanofluids and the subsequent wettability enhancements.  相似文献   

20.
In the present experimental study, a correlation is proposed to represent the heat transfer coefficients of the boiling flows through horizontal rectangular channels with low aspect ratios. The gap between the upper and the lower plates of each channel ranges from 0.4 to 2 mm while the channel width being fixed to 20 mm. Refrigerant 113 was used as the test fluid. The mass flux ranges from 50 to 200 kg/m2 s and the channel walls were uniformly heated up to 15 kW/m2. The quality range covers from 0.15 to 0.75 and the flow pattern appeared to be annular. The modified Lockhart–Martinelli correlation for the frictional pressure drop was confirmed to be within an accuracy of ±20%. The heat transfer coefficients increase with the mass flux and the local quality; however the effect of the heat flux appears to be minor. At the low mass flux condition, which is more likely to be with the smaller gap size, the heat transfer rate is primarily controlled by the liquid film thickness. A modified form of the enhancement factor F for the heat transfer coefficient in the range of ReLF200 well correlates the experimental data within the deviation of ±20%. The Kandlikar's flow boiling correlation covers the higher mass flux range (ReLF>200) with 10.7% mean deviation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号