首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
The flame quenching process in combustors was observed by high speed camera and Schlieren system, at the inflow conditions of Ma = 2.64, T 0 = 1 483 K, P 0 = 1.65 MPa, T = 724 K and P = 76.3 kPa. Changing process of the flame and shock structure in the combustor was clearly observed. The results revealed that the precombustion shock disappeared accompanied with the process in which the flame was blown out and withdrawed from the mainflow into the cavity and vanished after a short while. The time of quenching process was extended by the cavity flame holder, and the ability of flame holding was enhanced by arranging more cavities in the downstream as well. The flame was blown from the upstream to the downstream, so the flame in the downstream of the cavity was quenched out later than that in the upstream.  相似文献   

2.
Supersonic model combustors using two-stage injections of supercritical kerosene were experimentally investigated in both Mach 2.5 and 3.0 model combustors with stagnation temperatures of approximately 1,750 K. Supercritical kerosene of approximately 760 K was prepared and injected in the overall equivalence ratio range of 0.5-1.46. Two pairs of integrated injector/flameholder cavity modules in tandem were used to facilitate fuel-air mixing and stable combustion. For single-stage fuel injection at an upstream location, it was found that the boundary layer separation could propagate into the isolator with increasing fuel equivalence ratio due to excessive local heat release, which in turns changed the entry airflow conditions. Moving the fuel injection to a further downstream location could alleviate the problem, while it would result in a decrease in combustion efficiency due to shorter fuel residence time. With two-stage fuel injections the overall combustor performance was shown to be improved and kerosene injections at fuel rich conditions could be reached without the upstream propagation of the boundary layer separation into the isolator. Furthermore, effects of the entry Mach number and pilot hydrogen on combustion performance were also studied.  相似文献   

3.
We propose a new flame index for the transported probability density function(PDF) method. The flame index uses mixing flux projections of Lagrangian particles on mixture fraction and progress variable directions as the metrics to identify the combustion mode, with the Burke-Schumann solution as a reference. A priori validation of the flame index is conducted with a series of constructed turbulent partially premixed reactors. It indicates that the proposed flame index is able to identify the combustion mode based on the subgrid mixing information. The flame index is then applied the large eddy simulation/PDF datasets of turbulent partially premixed jet flames. Results show that the flame index separate different combustion modes and extinction correctly. The proposed flame index provides a promising tool to analyze and model the partially premixed flames adaptively.  相似文献   

4.
The interactions of a spherical flame with an in- cident shock wave and its reflected shock wave in a confined space were investigated using the three-dimensional reactive Navier-Stokes equations, with emphasis placed on the effect of chemical reactivity of mixture on the flame distortion and detonation initiation after the passage of the reflected shock wave. It is shown that the spatio-temporal characteristics of detonation initiation depend highly on the chemical reactivity of the mixture. When the chemical reactivity enhances, the flame can be severely distorted to form a reactive shock bifurcation structure with detonations initiating at different three-dimensional spatial locations. Moreover, the detonation initiation would occur earlier in a mixture of more enhanced reactivity. The results reveal that the detonations arise from hot spots in the unburned region which are initiated by the shock-detonation-transition mechanism.  相似文献   

5.
In this study the flow field and the nanoparticle collection efficiency of supersonic/hypersonic impactors with different nozzle shapes were studied using a computational modeling approach. The aim of this study was to develop a nozzle design for supersonic]hypersonic impactors with the smallest possible cut-off size d5o and rather sharp collection efficiency curves. The simulation results show that the changes in the angle and width of a converging nozzle do not alter the cut-off size of the impactor; however, using a conical Laval nozzle with an L]Dn ratio less than or equal to 2 reduced d5o. The effect of using a cap as a focuser in the nozzle of a supersonic/hypersonic impactor was also investigated. The results show that adding a cap in front of the nozzle had a noticeable effect on decreasing the cut-off size of the impactor. Both fiat disks and conical caps were examined, and it was observed that the nozzle with the conical cap had a lower cut-off size.  相似文献   

6.
A "swallowtail" cavity for the supersonic combustor was proposed to serve as an efficient flame holder for scramjets by enhancing the mass exchange between the cavity and the main flow. A numerical study on the "swallow- tail" cavity was conducted by solving the three-dimensional Reynolds-averaged Navier-Stokes equations implemented with a k-e turbulence model in a multi-block mesh. Turbu- lence model and numerical algorithms were validated first, and then test cases were calculated to investigate into the mechanism of cavity flows. Numerical results demonstrated that the certain mass in the supersonic main flow was sucked into the cavity and moved spirally toward the combustor walls. After that, the flow went out of the cavity at its lateral end, and finally was efficiently mixed with the main flow. The comparison between the "swallowtail" cavity and the conventional one showed that the mass exchanged between the cavity and the main flow was enhanced by the lateral flow that was induced due to the pressure gradient inside the cavity and was driven by the three-dimensional vortex ring generated from the "swallowtail" cavity structure.  相似文献   

7.
In this paper, compressible flow of aviation kerosene at supercritical conditions has been studied both numerically and experimentally. The thermophysical properties of supercritical kerosene are calculated using a 10 species surrogate based on the principle of extended corresponding states (ECS). Isentropic acceleration of supercritical kerosene to subsonic and supersonic speeds has been analyzed numerically. It has been found that the isentropic relationships of supercritical kerosene are significantly different from those of ideal gases. A two-stage fuel heating and delivery system is used to heat the kerosene up to a temperature of 820 K and pressure of 5.5 MPa with a maximum mass flow rate of 100 g/s. The characteristics of supercritical kerosene flows in a converging-diverging nozzle (Laval nozzle) have been studied experimentally. The results show that stable supersonic flows of kerosene could be established in the temperature range of 730 K-820 K and the measurements in the wall pressure agree with the numerical calculation.  相似文献   

8.
Observations are presented from experiments and calculations where a laminar spherical CH4/air flame is perturbed successively by incident and reflected shock waves. The experiments are performed in a standard shock tube arrangement, in which a high-speed shadowgraph imaging system is used to record evolutions of the flame. Numerical simulations are conducted by using second-order wave propagation algorithms, based on two-dimensional axisymmetric Navier-Stokes equations with detailed chemical reactions. Qualitative agreements are obtained between the experimental and numerical results. Under actions of incident shock waves, Richtmyer-Meshkov instability responsible for the flame deformation is induced in the flame, and the distoned flame takes a barrel shape. Then, under subsequent actions of the shock wave reflected from a planar wall, the flame takes an inclined non-symmetrical kidney shape in a symmetric cross section, which means a mushroom-like shape of the flame comes finally into being. The vorticity direction in the ring cap has been altered by the reflected shock's action, which makes the head of the mushroom-like flame extend quickly to the side wall.  相似文献   

9.
The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is ex- tended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agree- ment with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.  相似文献   

10.
Turbulence,vortex and external explosion induced by venting   总被引:2,自引:0,他引:2  
The process of explosion venting to air in a cylindrical vent vessel connected to a duct, filling with a stoichiometric methane-oxygen gas mixture, was simulated numerically by using a colocated grid SIMPLE scheme based on k-epsilon turbulent model and Eddydissipation combustion model. The characteristics of the combustible cloud, flame and pressure distribution in the external flow field during venting were analyzed in terms of the predicted results. The results show that the external explosion is generated due to violent turbulent combustion in the high pressure region within the external combustible cloud ignited by a jet flame. And the turbulence and vortex in the external flow field were also discussed in detail. After the jet flame penetrating into the external combustible cloud, the turbulent intensity is greater in the regions with greater average kinetic energy gradient, rather than in the flame front ; and the vortex in the external flow field is generated primarily due to the baroclinic effect, which is greater in the regions where the pressure and density gradients are nearly perpendicular.  相似文献   

11.
双燃式超燃发动机冷态内流场的数值研究   总被引:1,自引:0,他引:1  
研究了双燃式一体化通道(包含进气道、双燃式燃烧室和尾喷管)的冷态内流场特性.首次在激波风洞中对内流场进行纹影照相,用TVD格式求解三维全N-S方程对喷管和一体化通道进行分区数值模拟,并考察了几何参数对内流场的影响.结果表明对典型工况(h  相似文献   

12.
Simultaneous measurements of PLIF-kerosene and PLIF-OH have been successfully performed in a multipoint injection system for various overall equivalence ratio, air inlet temperature between 480 and 730 K and pressure up to 2.2 MPa. Single shot 2D-maps of the spatial distribution of kerosene vapour and OH radical in the combustor have been recorded with good signal-to-noise ratio. Results show that depending on the split between the pilot and the main injectors, the flame front exhibits a single or a double structure. Good spatial correlation between the repartition of the kerosene vapour and the position of the flame front was observed; in particular, no “dark zone” is observed between the fuel and the flame front. As temperature and pressure increase, fuel evaporation improves and the spatial distribution of OH radical becomes more homogeneous in the combustor, suggesting a partially-distributed combustion. To cite this article: M. Orain et al., C. R. Mecanique 337 (2009).  相似文献   

13.
The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of −30 to 30 kPa for each equivalence ratio (Φ = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINOx simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated.  相似文献   

14.
Within the framework of the ideal, i.e., inviscid and non-heat conducting, gas model we consider the problem of designing the supersonic section of a two-dimensional or axisymmetric nozzle realizing a uniform supersonic flow limitingly similar with a sonic flow when the choked flow involves a curvilinear sonic line. Emphasis is placed on nozzles with abruptly or steeply converging subsonic sections and a strongly curved sonic line formed by the C -characteristics of the expansion fan with the focus at the lower bend point of the vertical section of the subsonic contour. In the two-dimensional case, the least possible greater-than-unity Mach number M em at the nozzle exit corresponds to the flow in which the first intersection of the C +-characteristics originated at the closing C -characteristic of the expansion fan falls on the unknown contour of its supersonic part. For a uniform flow with M e < M em the intersection of C +-characteristics beneath the unknown contour make impossible its construction. A part of the contour realizing a uniform flow with M em > 1 ensures a limitingly rapid flow acceleration and forms the initial region of the supersonic generator of a maximum-thrust nozzle. For this reason, in the case of a curvilinear sonic line the supersonic generators of these nozzles have two, rather than one, bends, which, however, is interesting only for the theory. At least, in the calculated examples the thrusts of the nozzles with one and two bends differ only by a hundredth or even thousandth fractions of per cent.  相似文献   

15.
We analyze the propagation of nonlinear waves in homogenized periodic nonlinear hexagonal networks, considering successively 1D and 2D situations. Wave analysis is performed on the basis of the construction of the effective strain energy density of periodic hexagonal lattices in the nonlinear regime. The obtained second order gradient nonlinear continuum has two propagation modes: an evanescent subsonic mode that disappears after a certain wavenumber and a supersonic mode characterized by an increase of the frequency with the wavenumber. For a weak nonlinearity, a supersonic mode occurs and the dispersion curves lie above the linear dispersion curve (vp =vp0). For a higher nonlinearity, the wave changes from a supersonic to an evanescent subsonic mode at s=0.7 and the dispersion curves drops below the linear case and vanish for certain values of the wavenumber. An important decrease in the frequency occurs for both subsonic and supersonic modes when the lattice becomes auxetic, and the longitudinal and shear modes become very close to each other. The influence of the lattice geometrical parameters of the lattice on the dispersion relations is analyzed.  相似文献   

16.
In recent years, the NO x emissions of heavy duty gas turbine burners have been significantly reduced by introducing premixed combustion. These highly premixed burners are known to be prone to combustion oscillations. In this paper, investigations of a single model gas turbine burner are reported focusing on thermo-acoustic instabilities and their interaction with the periodic fluctuations of the velocity and pressure. Phase-locked optical measurement techniques such as LDA and LIF gave insight into the mechanisms.Detailed investigations of a gas turbine combustor rig revealed that the combustor as well as the air plenum oscillate in Helmholtz modes. These instabilities could be attributed to the phase lag of the pressure oscillations between the air plenum and the combustor, which causes an acceleration and deceleration of the air flow through the burner and, therefore, alternating patterns of fuel rich and lean bubbles. When these bubbles reach the reaction zone, density fluctuations are generated which in turn lead to velocity fluctuations and, hence, keep up the pressure oscillations.With increasing the equivalence ratio strong combustion oscillations could be identified at the same frequency. Similarly as with weak oscillations, Helmholtz mode pressure fluctuations are present but the resulting velocity fluctuations in the combustor can be described as a pumping motion of the flow. By the velocity fluctuations the swirl stabilization of the flame is disturbed. At the same time, the oscillating pressure inside the combustor reaches its minimum value. Shortly after the flame expands again, the pressure increases inside the combustor. This phenomenon which is triggered by the pressure oscillations inside the air plenum seems to be the basic mechanism of the flame instability and leads to a significant increase of the pressure amplitudes.  相似文献   

17.
We establish the existence and stability of multidimensional steady transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Laval nozzle. The transonic flow is governed by the inviscid potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the exit at infinity, and the slip boundary condition on the nozzle boundary. Our results indicate that, if the supersonic upstream flow at the entrance is sufficiently close to a uniform flow, there exists a solution that consists of a C 1,α subsonic flow in the unbounded downstream region, converging to a uniform velocity state at infinity, and a C 1,α multidimensional transonic shock separating the subsonic flow from the supersonic upstream flow; the uniform velocity state at the exit at infinity in the downstream direction is uniquely determined by the supersonic upstream flow; and the shock is orthogonal to the nozzle boundary at every point of their intersection. In order to construct such a transonic flow, we reformulate the multidimensional transonic nozzle problem into a free boundary problem for the subsonic phase, in which the equation is elliptic and the free boundary is a transonic shock. The free boundary conditions are determined by the Rankine–Hugoniot conditions along the shock. We further develop a nonlinear iteration approach and employ its advantages to deal with such a free boundary problem in the unbounded domain. We also prove that the transonic flow with a transonic shock is unique and stable with respect to the nozzle boundary and the smooth supersonic upstream flow at the entrance.  相似文献   

18.
Two-fluid model and divisional computation techniques were used. The multi-species gas fully N-S equations were solved by upwind TVD scheme. Liquid phase equations were solved by NND scheme. The phases-interaction ODE equations were solved by 2nd Runge-Kutta approach. The favorable agreement is obtained between computational results and PLIF experimental results of iodized air injected into a supersonic flow. Then, the numerical studies were carried out on the mixing of CH 4 and kerosene injected into a supersonic flow with H 2 pilot injection. The results indicate that the penetration of kerosene approaches maximum when it is injected from the second injector. But the kerosene is less diffused compared with the gas fuels. The free droplet region appears in the flow field. The mixing mechanism of CH 4 with H 2 pilot injection is different from that of kerosene. In the staged duct, H 2 can be entrained into both recirculation zones produced by the step and injectors. But CH 4 can only be carried into the recirculation between the injectors. Therefore, initiations of H 2 and CH 4 can occur in those regions. The staged duct is better in enhancing mixing and initiation with H 2 pilot flame.  相似文献   

19.
One of the most promising methods for reducing NO x emissions of jet engines is the lean combustion process. For realization of this concept the percentage of air flowing through the combustor dome has to be drastically increased, which implies high volume fluxes in the primary zone of the combustion chamber and represents a substantial challenge in regard to the flame stabilization. Swirl motion is thus applied to the air flux by the swirl generator and decisively contributes to the flame stabilization. The current paper reviews an atmospheric investigation of a burner configuration in regard to the weak extinction limit, comprising a confined non-premixed swirl-stabilized flame. The burner can be supplied with either kerosene or after a small adaption with natural gas (methane). Therefore, a comparison of a kerosene-fuelled flame (spray flame) to a natural gas fuelled one (methane flame) can be performed. Both are realized by almost identical burner configuration and at identical conditions. The main idea of this work is to align the stability characteristics of both flames by means of similarity. However, fundamental differences regarding the flame structures of the flames are detected through in-flame measurements. This determines the limits of the current approach and motivates an appropriate choice of flame modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号