首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用格子Boltzmann方法对气泡在液体中的运动规律及相互作用的气液两相流问题进行了研究;采用了基于自由能模型且适用于大密度比多相流问题的Z-S-C模型,计算模拟了处于不可压缩流体中的气泡在浮力作用下的运动特性;通过算例验证了Z-S-C模型的可行性;研究了不同放置位置两气泡的运动形态及其相互作用情况,分别分析了沿y方向同轴放置的两气泡间距变化对合并过程和沿x方向并列放置的两气泡的间距变化对气泡相互作用的影响。结果表明:两气泡的初始间距在一定范围内时,初始间距对上升过程中气泡间的相互作用具有重要影响;当初始间距超过一定量值时,上升过程中两气泡相互独立,不存在相互作用。  相似文献   

2.
基于插值补充格子波尔兹曼方法和幂律流体的本构方程,建立了贴体坐标系下适用于幂律流体的格子波尔兹曼模型,模拟了幂律流体的圆柱绕流问题,采用非平衡外推格式处理圆柱表面的速度无滑移边界,利用应力积分法确定曳力系数和升力系数,并与基于标准的格子波尔兹曼方法和有限容积法获得的数值数据进行对比,吻合良好. 进行了网格无关性验证之后,分析了稳态流动时,不同雷诺数下幂律指数对于尾迹长度、分离角、圆柱表面黏度分布、表面压力系数及曳力系数的影响,以及非定常流动中,幂律指数对于流场、曳力系数、升力系数和斯特劳哈尔数的影响. 获得的变化规律与基于其他数值模拟方法得到的结果相一致,充分验证了模型的有效性和正确性. 结果表明:插值补充格子波尔兹曼方法可以用来模拟幂律流体在具有复杂边界流场内的流动问题,通过引入不同的非牛顿流体本构方程,该方法还可以进一步应用于其他类型的非牛顿流体研究中.   相似文献   

3.
气泡与弹性边界的相互作用研究   总被引:1,自引:0,他引:1  
从气泡与弹性边界相互作用基本现象入手, 基于势流理论, 建立气泡与弹性边界相互作用的数值模型, 计及浮力与表面张力, 模拟弹性介质附近单个气泡的动态特性, 通过气泡周围压力场的分布来讨论蘑菇状气泡的成因, 数值结果与已有实验结果吻合良好. 讨论两个气泡与弹性边界的相互作用, 并通过与Robinson 和Blake的实验结果对比, 验证数值模型的正确性. 数值模拟发现, 浮力、弹性系数和密度比是影响气泡动态特性的重要特征参数.   相似文献   

4.
基于插值补充格子波尔兹曼方法和幂律流体的本构方程,建立了贴体坐标系下适用于幂律流体的格子波尔兹曼模型,模拟了幂律流体的圆柱绕流问题,采用非平衡外推格式处理圆柱表面的速度无滑移边界,利用应力积分法确定曳力系数和升力系数,并与基于标准的格子波尔兹曼方法和有限容积法获得的数值数据进行对比,吻合良好. 进行了网格无关性验证之后,分析了稳态流动时,不同雷诺数下幂律指数对于尾迹长度、分离角、圆柱表面黏度分布、表面压力系数及曳力系数的影响,以及非定常流动中,幂律指数对于流场、曳力系数、升力系数和斯特劳哈尔数的影响. 获得的变化规律与基于其他数值模拟方法得到的结果相一致,充分验证了模型的有效性和正确性. 结果表明:插值补充格子波尔兹曼方法可以用来模拟幂律流体在具有复杂边界流场内的流动问题,通过引入不同的非牛顿流体本构方程,该方法还可以进一步应用于其他类型的非牛顿流体研究中.  相似文献   

5.
霍岩  郜冶 《计算力学学报》2013,30(1):117-123
利用基于Vreman亚格子模型的大涡模拟技术对有开口的单室和双室房间内热驱动流进行了数值模拟,利用函数分析法定量分析了模拟结果的准确性,并与Smagorinsky亚格子模型的模拟结果进行了比较.结果表明,Vreman和Smagorinsky亚格子模型的计算结果均能够满足工程的需求,但Vreman亚格子模型在开口附近区域的温度和U速度计算结果在整体上比Smagorinsky亚格子模型更接近实验值;Vreman亚格子模型未像Sma-gorinsky亚格子模型那样过高地估算壁面附近高温区域的粘性耗散;对于单室房间内热烟气层高度的预测,采用Vreman模型得到的计算结果准确性比Smagorinsky亚格子模型提高近50%.  相似文献   

6.
张洋  陈科  尤云祥  盛立 《力学学报》2019,51(5):1285-1295
黏性液体中的气泡浮升运动有趣而又复杂,而气泡与固壁边界的相互作用更是广泛存在于实际工程中.基于轴对称数值计算,模拟了浮力驱动下气泡在黏性液体中上升并与顶部水平固壁面碰撞、回弹的过程.采用考虑表面张力的不可压、变密度Navier-Stokes方程来描述气液两相流流动,并通过基于分级八叉树的有限体积法进行数值求解.为准确捕捉气泡在回弹过程中局部而迅速的拓扑变化,采用了动态自适应网格技术耦合流体体积法(volume of fluid,VOF)来重构气泡的形状. 从气泡对壁面的碰撞和回弹的基本现象入手,研究了伽利略数 Ga和接触速度$U_{a}$对气泡回弹动力学特性的影响, 分析了气泡碰撞过程中涡结构的变化.用回弹高度$H$、回弹周期$T$、长宽比{$A_{r}$}、浮升速度$U$、轴向位置$z$和回复系数$C_{r}$等参数来表征不同条件时气泡的运动和形状特性. 研究结果表明,气泡的回弹运动特性对 Ga十分敏感. Ga的增大可加剧气泡形变, 促进气泡的回弹运动, 增多回弹次数,增大回弹参数($T$和$H)$, 提升回复系数. 然而,接触速度并非决定气泡回弹动力学的控制参数, $U_{a}$的改变并不会改变回复系数.   相似文献   

7.
黏性液体中的气泡浮升运动有趣而又复杂,而气泡与固壁边界的相互作用更是广泛存在于实际工程中.基于轴对称数值计算,模拟了浮力驱动下气泡在黏性液体中上升并与顶部水平固壁面碰撞、回弹的过程.采用考虑表面张力的不可压、变密度Navier-Stokes方程来描述气液两相流流动,并通过基于分级八叉树的有限体积法进行数值求解.为准确捕捉气泡在回弹过程中局部而迅速的拓扑变化,采用了动态自适应网格技术耦合流体体积法(volume of fluid, VOF)来重构气泡的形状.从气泡对壁面的碰撞和回弹的基本现象入手,研究了伽利略数Ga和接触速度U_a对气泡回弹动力学特性的影响,分析了气泡碰撞过程中涡结构的变化.用回弹高度H、回弹周期T、长宽比A_r、浮升速度U、轴向位置z和回复系数Cr等参数来表征不同条件时气泡的运动和形状特性.研究结果表明,气泡的回弹运动特性对Ga十分敏感. Ga的增大可加剧气泡形变,促进气泡的回弹运动,增多回弹次数,增大回弹参数(T和H),提升回复系数.然而,接触速度并非决定气泡回弹动力学的控制参数, Ua的改变并不会改变回复系数.  相似文献   

8.
基于格子波尔兹曼方法(lattice Boltzmann method) 和幂律流体本构方程, 建立二维流动模型, 将充分发展的速度分布与理论解进行对比, 吻合良好. 对幂律流体的圆柱绕流进行模拟, 采用了反弹格式的无滑移圆柱边界, 并使用应力积分法计算阻力系数, 分析了稳态圆柱绕流时, 阻力系数随幂律指数n 以及雷诺数Re 的变化规律. 分析了椭圆横轴/纵轴长度比和幂律指数n, 对压力系数Cp 和黏度系数Cv 的影响. 得到的变化规律与有限元方法规律一致, 验证了格子波尔兹曼模型的可行性.  相似文献   

9.
杨秋足  徐绯  王璐  杨扬 《力学学报》2019,51(3):730-742
多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothedparticle hydrodynamics,SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh--Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.   相似文献   

10.
格子Boltzmann方法可以有效地模拟水动力学问题,边界处理方法的选择对于可靠的模拟计算至关重要.本文基于多松弛时间格子Boltzmann模型开展了不同边界条件下,周期对称性结构和不规则结构中流体流动模拟,阐述了不同边界条件的精度和适用范围. 此外,引入一种混合式边界处理方法来模拟多孔介质惯性流, 结果表明:对于周期性对称结构流动模拟,体力格式边界条件和压力边界处理方法是等效的,两者都能精确地捕捉流体流动特点; 而对于非周期性不规则结构,两种边界处理方法并不等价,体力格式边界条件只适用于周期性结构;由于广义化周期性边界条件忽略了垂直主流方向上流体与固体格点的碰撞作用,同样不适合处理不规则模型;体力-压力混合式边界格式能够用来模拟周期性或非周期性结构流体流动,在模拟多孔介质流体惯性流时,比压力边界条件有更大的应用优势,可以获得更大的雷诺数且能保证计算的准确性.   相似文献   

11.
Lattice Boltzmann method is one of the widely used in multiphase fluid flow.However,the two main disadvantages of this method are the instability of numerical calculations due to the large density ratio of two phases and impossibility of the temperature distribution to be fed back into the velocity distribution function when the temperature is simulated.Based on the combination prescribed by Inamuro,the large density ratio two-phase flow model and thermal model makes the density ratio of the model simulation to be increased to 2778:1 by optimizing the interface distribution function of two-phase which improves the accuracy of differential format.The phase transition term is added as source term into the distribution function controlling two phase order parameters to describe the temperature effect on the gas-liquid phase transition.The latent heat generated from the phase change is also added as a source term into the temperature distribution function which simulates the movement of the flow under the common coupling of density,velocity,pressure and temperature.The density and the temperature distribution of single bubble are simulated.Comparison of the simulation results with experimental results indicates a good agreement pointing out the effectiveness of the improved model.  相似文献   

12.
轴向移动梁动力学问题具有广泛的工程应用背景,如:机械手、机床主轴、武器身管等.计算轴向移动梁动力学响应是评估结构动力学性能以及最终指导结构设计的一个重要手段.采用Rayleigh-Ritz法、拉格朗日方程推导了轴向移动悬臂梁时变动力学方程.选取幂级数函数构造试函数对轴向移动系统动力问题进行求解.幂级数函数良好的积分与微分性能,使得推导容易以矩阵的形式快速进行,便于符号运算软件直接生成MATLAB程序.由于MATLAB基本数据单位为矩阵,符号软件生成的程序只需经过简单修改便可进行动力学计算.大大缩短了轴向移动梁从建模到动力学分析的时间,过程十分高效.通过四组算例,将本文方法计算得到的动力学响应与文献数据进行对比,对该方法准确性进行了验证,并给出了幂级数函数拟合阶数的选取原则.以此为基础,研究了轴向移动梁的频率响应特性.分为考虑重力与忽略重力两种情况,讨论了轴向振动幅度对其频率响应特性的影响.  相似文献   

13.
A multiphase flow model has been established based on a moving particle semi‐implicit method. A surface tension model is introduced to the particle method to improve the numerical accuracy and stability. Several computational techniques are employed to simplify the numerical procedure and further improve the accuracy. A particle fraction multiphase flow model is developed and verified by a two‐phase Poiseuille flow. The multiphase surface tension model is discussed in detail, and an ethanol drop case is introduced to verify the surface tension model. A simple dam break is simulated to demonstrate the improvements with various modifications in particle method along with a new boundary condition. Finally, we simulate several bubble rising cases to show the capacity of this new model in simulating gas–liquid multiphase flow with large density ratio difference between phases. The comparisons among numerical results of mesh‐based model, experimental data, and the present model, indicate that the new multiphase particle method is acceptable in gas–liquid multiphase fluids simulation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the saturated pool boiling is investigated using lattice Boltzmann method. The written FORTRAN code is validated in two aspects: For flow, the thermodynamic consistency test and Laplace law are applied and for heat transfer, the space- and time- averaged Nusselt number is compared with Berenson analytical solution in film boiling regime. In addition, the results of bubble generation and departure are compared with some well-known analytical solutions to show the accuracy of the code. It is confirmed that bubble departure diameter and the departure frequency are related to the gravity acceleration with powers of ? 0.505 and 0.709, respectively, which is in a very good agreement with the existing analytical expressions. The present model has the ability to tune different surface tensions independent of liquid/vapor density ratio, which was unreachable using other existing numerical models of boiling. Thus, the sole effects of surface tension on boiling can also be taken into consideration using the present model. It is also shown that the departure diameter is related to the surface tension with a power of 0.485, which is in good agreement with the analytical expressions. Temperature contours are shown together with flow lines to have a better viewpoint for studying the bubble’s behavior. An intensive temperature gradient is observed in the necking area at the departure time. All the four boiling regimes in the boiling curve are simulated under constant temperature boundary condition. The Prandtl number effects on vapor bubble dynamics in the film boiling regime are investigated using the improved Shan and Chen model for the first time. Results revealed that bubbles are more resistant to depart from the vapor blanket with increasing the Prandtl number.  相似文献   

15.
为了探讨超声珩磨作用下磨削区的空化机理,基于速度势叠加原理,考虑超声珩磨速度和珩磨压力,建立了磨削区两空化泡的动力学模型. 数值模拟了磨削区空化泡初始半径、两空化泡间距、超声声压幅值、珩磨压力、珩磨头转速对磨削区两空化泡动力学特性的影响. 研究表明,考虑两空化泡之间的相互作用时,要想获得良好的空化效果,可将两空化泡初始半径之比控制在3 倍以内;选择较高的超声波声压幅值与较低的珩磨压力,并且使超声波声压幅值与珩磨压力和液体静压力之差介于0.66~1.89MPa 之间;增大珩磨头转速空化泡溃灭也略有加速;通过试验测量材料表面粗糙度的方法间接验证了理论分析的合理性.  相似文献   

16.
假设水下爆炸气泡的内部气体在膨胀收缩过程中满足绝热条件,周围流体无黏无旋不可压缩. 基于势流理论,采用边界元法研究气泡动力学行为,重点关注气泡引起的流场脉动载荷以及滞后流特性,给出了相关的理论推导和数值计算方法. 通过将数值结果与解析解、实验值进行对比,数值模型的收敛性和有效性能够得到保证. 利用编写的程序进行计算和分析,发现在气泡加速膨胀阶段,流场压力在气泡径向不一定是逐渐衰减,还有可能以先增后减的规律变化;气泡射流后,为了能够继续描述环状气泡的运动以及流场特性,将此时的流场分为无旋场和一个布置在气泡内部涡环的叠加,计算过程中采用了一些数值技巧处理气泡的拓扑结构,得以连续模拟多个周期的气泡运动. 环状气泡具有相对较高的上浮迁移速度,而且在其顶部和底部附近分别形成两个高压区,顶部的高压区峰值相对较大,底部的高压区范围相对较大. 环状气泡中心轴上的流场速度会在气泡中心有一个加速过程,在气泡顶部附近又迅速减小.  相似文献   

17.
介绍一种可用于计算生物力学的离散梯度方法,此方法可利用离散的点云模型直接进行数值模拟分析而不需要传统的几何模型。将离散梯度法应用于点云模型需要首先确定模型中点之间的相邻关系和每个点所分配的材料体积,然后通过用广义的有限差分的形式定义了梯度插值向量,并以此向量来近似函数在每个离散点上的梯度。从弱形式出发,推导建立了适用于弹性固体大变形问题的求解器,并具有和有限元法中双线性四边形单元一致的准确性和收敛性。着重描述了一种可以从医学图像中快速提取材料点并建立点云模型的方法,以及利用三角划分和重心划分确定材料点之间的相邻关系和每个材料点体积的具体过程。通过腹主动脉瘤膨胀的静力学模拟分析,展示了离散梯度法的实用性和准确性。该算法实现了基于医学图像进行生物力学分析的过程自动化,为病体特异性的研究和治疗提供便利和实用的工具。  相似文献   

18.
对激光水下聚焦爆炸推进的作用机理开展了实验测量和数值模拟研究. 实验观察到激光水下聚焦爆炸推进分为两个物理过程: (1) 强激光与铝膜相互作用诱导等离子体演化, 产生短脉冲、高幅值的等离子体压力, 并对航行体做功; (2) 激光爆炸产物气泡脉动, 对航行体继续提供推力. 另外, 实验还对不同介质中的激光推进效率以及气泡与约束壁面/自由水面相互作用的物理机制进行了研究. 发现在高阻抗环境介质、气泡受约束脉动以及近自由水面条件下, 激光爆炸推进的效率更高. 在实验的基础上, 建立了激光水下聚焦爆炸推进的物理模型, 发展了相应的耦合数值计算方法. 计算得到的气泡脉动规律及航行体运动规律与实验测量结果一致, 验证了计算的模型和方法, 为强激光水下聚焦爆炸推进机理的研究提供了一种有效的方法.   相似文献   

19.
A three-dimensional method for the calculation of interface pressure in the computational modeling of free surfaces and interfaces is developed. The methodology is based on the calculation of the pressure force at the interfacial cell faces and is mainly designed for volume of fluid (VOF) interface capturing approach. The pressure forces at the interfacial cell faces are calculated according to the pressure imposed by each fluid on the portion of the cell face that is occupied by that fluid. Special formulations for the pressure in the interfacial cells are derived for different orientations of an interface. The present method, referred to as pressure calculation based on the interface location (PCIL), is applied to both static and dynamic cases. First, a three-dimensional motionless drop of liquid in an initially stagnant fluid with no gravity force is simulated as the static case and then two different small air bubbles in water are simulated as dynamic cases. A two-fluid, piecewise linear interface calculation VOF method is used for numerical simulation of the interfacial flow. For the static case, both the continuum surface force (CSF) and the continuum surface stress (CSS) methods are used for surface tension calculations. A wide range of Ohnesorge numbers and density and viscosity ratios of the two fluids are tested. It is shown that the presence of spurious currents (artificial velocities present in case of considerable capillary forces) is mainly due to the inaccurate calculation of pressure forces in the interfacial computational cells. The PCIL model reduces the spurious currents up to more than two orders of magnitude for the cases tested.

Also for the dynamic bubble rise case, it is shown that using the numerical solver employed here, without PCIL, the magnitude of spurious currents is so high that it is not possible to simulate this type of surface tension dominated flows, while using PCIL, we are able to simulate bubble rise and obtain results in close agreement with the experimental data.  相似文献   

20.
The velocity field in the vicinity of a laser-generated cavitation bubble in water is investigated by means of particle tracking velocimetry (PTV). Two situations are explored: a bubble collapsing spherically and a bubble collapsing aspherically near a rigid wall. In the first case, the accuracy of the PTV method is assessed by comparing the experimental data with the flow field around the bubble as obtained from numerical simulations of the radial bubble dynamics. The numerical results are matched to the experimental radius–time curve extracted from high-speed photographs by tuning the model parameters. Trajectories of tracer particles are calculated and used to model the experimental process of the PTV measurement. For the second case of a bubble collapsing near a rigid wall, both the bubble shape and the velocity distribution in the fluid around the bubble are measured for different standoff parameters γ at several instants in time. The results for γ > 1 are compared with the corresponding results of a boundary-integral simulation. For both cases, good agreement between simulation and experiment is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号