首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于CONWEP对多层梯度点阵夹芯板在爆炸载荷下的动态响应进行了模拟研究。在相同爆炸载荷下,对四种梯度点阵模型的后面板中心挠度峰值进行了对比分析,讨论了各模型每层芯子的总变形能随相对密度比的变化规律,并对多层点阵夹芯板各层的变形情况进行了比较。分析结果表明:对于三层金字塔点阵夹芯结构,强弱相间的点阵夹芯板充分利用了前两层芯子的变形吸能,从而对第三层芯子和后面板起到了很好的保护作用;且在350g TNT炸药和200mm爆距的爆炸载荷下,相对密度比为0.5的强弱相间点阵夹芯板的后面板中心挠度峰值最小,抗爆冲击性能最优。  相似文献   

2.
采用ANSYS/LS-DYNA商用有限元程序,首次比较了波纹夹芯板、方孔蜂窝夹芯板、三角形蜂窝夹芯板、金字塔夹芯板四种典型点阵金属夹芯板受刚性物块低速冲击时的动态行为,以考察点阵金属夹芯结构的动态响应及抗冲击性能。刚性物块的冲击速度范围取75~150m/s,对每种夹芯板选取芯体与上层面板的连接点及连接点之间的空隙两个典型位置进行了冲击模拟。经过分析得出了不同点阵夹芯板的变形机制和吸能特性。结果表明:在刚性物块的冲击过程中,密度大、强度高的面板(上层)主要发挥抗剪切作用,密度低、强度低的芯体主要是通过自身屈曲、起皱等变形消耗刚性物块的动能,抗剪切能力相对较差;在四种点阵夹芯板中,波纹夹芯板的最大挠度和变形区域都是最小的,表现出了最好的抗冲击性能。  相似文献   

3.
轻质点阵结构在高温工作环境下易产生失稳破坏,因此,研究其在热载荷条件下的稳定性是极为重要的。本文采用有限元数值计算和实验方法研究了轻质点阵夹芯板在热载荷作用下的稳定性问题。通过与点阵夹芯板的单向压力失稳形式相比较发现:点阵夹芯板的单向压力失稳和热载荷作用失稳的形式并不完全一致;而且,面板厚度及其与夹芯杆件的粘接程度对点阵夹芯板的稳定性有着重要的影响。此外,本文针对将温度变化等效为热应力这一等效模型的适用性进行了讨论,发现等效均匀化理论只适用于面板较厚且产生整体失稳的情况。  相似文献   

4.
点阵桁架夹芯板作为一种特殊的超轻多孔材料,具有广阔应用前景。针对其加工和服役过程中经常发生的脱焊损伤,本文提出一种基于结构振动特性进行金字塔型点阵桁架夹芯板无损评价的方法。首先,基于有限元理论对夹芯板在不同损伤状态(损伤个数、位置)下的振动特性进行数值模拟;然后基于计算所得振动特性参数,运用切比雪夫多项式逼近法计算相应均布载荷曲面的曲率,进而通过此参数与原始未损伤模型参数作差进行损伤识别;最后运用曲面拟合算法解决该检测方法对原始未损伤模型参数的依赖性问题。数值计算结果表明:四周简支金字塔型点阵桁架夹芯板中存在损伤时,损伤前后结构损伤位置处的均布载荷曲面的曲率差值比较明显,基于此差分方法可精确识别各种损伤状况下夹芯板脱焊损伤的位置和数量;利用曲面拟合算法可以消除损伤结构参数中因损伤造成的尖点,从而不需以原始未损伤模型参数为依据即可精确识别损伤。  相似文献   

5.
采用弹道冲击摆系统开展了爆炸载荷下分层梯度泡沫铝夹芯板的变形/失效模式和抗冲击性能实验研究,并配合激光位移传感器得到试件后面板中心点的挠度-时程响应曲线。研究了炸药当量和芯层组合方式对夹芯板试件变形/失效模式和抗冲击性能的影响。实验结果表明,泡沫铝夹芯板的变形/失效模式主要表现为面板的非弹性大变形,芯层压缩变形、芯层拉伸断裂以及芯层剪切失效。在研究爆炸冲量范围内,非梯度芯层夹芯板的抗冲击性能明显优越于所有分层梯度芯层夹芯板。对于分层梯度夹芯板试件,爆炸冲量较小时芯层组合形式对分层梯度芯层夹芯板的抗冲击性能的影响不大,而爆炸冲量较大时,最大相对密度芯层靠近前面板组合形式的分层梯度夹芯板试件抗冲击性能较好。研究结果可为泡沫金属夹芯结构的优化设计提供参考。  相似文献   

6.
采用有限元方法研究爆炸载荷下四边固支孔结构金属复合夹芯板的动力响应及吸能特性,给出了孔结构金属复合夹芯板的动力响应过程,得到夹芯板的变形模式,比较了孔结构金属复合夹芯板与非孔结构金属复合夹芯板的抗爆炸冲击性能,同时讨论了孔大小、间距、排布方式和面板质量分布等因素对孔结构金属复合夹芯板抗爆炸冲击性能的影响。研究结果表明,迎爆面外面板的孔设计使爆炸冲击波穿过孔洞直接作用在芯材上,增强了芯材的压缩,从而提高了夹芯板的能量吸收能力。同等面密度情况下,内外面板厚度比大于1的孔结构金属复合夹芯板变形挠度小于内外面板厚度比小于1的孔结构金属复合夹芯板。进一步研究发现,通过合理设计内外面板的质量分布,可以使孔结构金属复合夹芯板的抗爆炸冲击性能最优。  相似文献   

7.
采用有限元方法研究爆炸载荷下四边固支孔结构金属复合夹芯板的动力响应及吸能特性,给出了孔结构金属复合夹芯板的动力响应过程,得到夹芯板的变形模式,比较了孔结构金属复合夹芯板与非孔结构金属复合夹芯板的抗爆炸冲击性能,同时讨论了孔大小、间距、排布方式和面板质量分布等因素对孔结构金属复合夹芯板抗爆炸冲击性能的影响。研究结果表明,迎爆面外面板的孔设计使爆炸冲击波穿过孔洞直接作用在芯材上,增强了芯材的压缩,从而提高了夹芯板的能量吸收能力。同等面密度情况下,内外面板厚度比大于1的孔结构金属复合夹芯板变形挠度小于内外面板厚度比小于1的孔结构金属复合夹芯板。进一步研究发现,通过合理设计内外面板的质量分布,可以使孔结构金属复合夹芯板的抗爆炸冲击性能最优。  相似文献   

8.
爆炸载荷作用下铝蜂窝夹芯板动力响应研究   总被引:2,自引:0,他引:2  
采用自行设计的冲击摆实验系统对铝蜂窝夹芯板在爆炸载荷作用下的动力响应进行了系统实验研究,给出了面板和铝蜂窝不同区域的不同变形模态,得到了不同炸药当量对铝蜂窝夹芯板动态响应的影响规律,证实了铝蜂窝夹芯板产生较大塑性变形时,比一般的结构具有更好的能量吸收特性.并利用LS-DYNA对其动力响应进行了数值仿真,考察了炸药起爆、接触界面及上表面接触力对夹芯板变形影响的全过程,得到了板中心的最终变形和芯层的变形模式,与实验结果吻合较好.  相似文献   

9.
预加载复合材料层合薄板低速冲击理论分析   总被引:1,自引:0,他引:1  
为更真实地揭示飞机复合材料结构抗冲击性能,开展了面内预载荷作用下的复合材料层合薄板低速冲击行为研究。根据各向异性材料弹性力学和经典薄板理论,采用Sveklo接触律描述了冲击接触刚度和冲击变形,通过面内载荷引入预载荷因素,提出了弹性球体低速冲击预载荷复合材料层合薄板的理论分析模型;并探讨了面内预载荷状态及冲击速度对结构冲击动响应的影响规律。结果表明:面内预载荷对冲击力和冲击变形均有显著影响;面内压缩载荷降低了结构抗弯刚度,使横向抗冲击性能降低,而面内拉伸载荷反之;低速冲击过程中的接触区域面积很小,分布冲击力可简化为集中力处理。作为复合材料层合薄板低速冲击过程的重要影响因素,预载荷状态必须加以考虑。  相似文献   

10.
王博  周才华  由衷 《爆炸与冲击》2015,35(4):473-481
为了降低结构的初始载荷、增加有效塑性变形面积,进而提高其吸能效率,研究一种以新型的预折纹管,在普通管的管壁上引入特别设计的折角。基于有限元软件ABAQUS/EXPLICIT的数值分析验证了预折纹在低速冲击载荷作用下可以引导预期的大变形模式,预折纹管的这种大变形模式相较于普通方管的对称变形模式有更低峰值载荷和更高的平均载荷。通过低速落锤实验获得了与有限元模拟结果相似的载荷-位移曲线和变形模式,验证了数值结果的可信性和预折纹方管的高效吸能特点。  相似文献   

11.
任鹏  张伟  刘建华 《爆炸与冲击》2016,36(1):101-106
基于非药式水下爆炸冲击波加载技术,对格栅型夹层结构的动态响应及抗冲击防护性能,进行了实验研究。利用高速相机,对夹层板的动态变形情况进行了实时观测,获得了格栅夹层板气背面在水下冲击波作用下的动态响应历程,并结合相同面密度单层板在水下冲击波作用下的抗冲击变形结果,对比分析了铝合金格栅夹层板的抗冲击防护性能,获得了格栅型夹层板的气背面板最大变形量与水下冲击波量纲一冲量间的定量关系。  相似文献   

12.
The expauded metal sheets were folded with 11% work-hardening.These were subsequently used with resistance welding to construct X-type lattice truss sandwich panels having a core relative density of 0....  相似文献   

13.
加筋壁板是复合材料飞行器主承力构件的主要结构形式,通过复合材料铺层参数设计可以有效优化壁板的强度,但铺层参数的变化也会影响壁板的固化变形.因此,复合材料加筋壁板铺层设计过程中需要综合考虑整体强度和固化变形.本文针对复合材料加筋壁板结构,建立了失效分析模型和固化变形分析模型;基于实验设计方法、NSGA-Ⅱ遗传算法以及上述分析模型,建立了综合考虑强度与固化变形的加筋壁板铺层优化方法.优化结果显示复合材料加筋壁板在强度提高的同时,固化变形显著降低.  相似文献   

14.
The normal impact between a golf ball and a rigid steel target was studied to examine ball deformation and the contact force during the impact. Using high-speed video images, the normal and tangential compression ratios of the ball were measured to analyze the ball deformation quantitatively. In addition, the inbound and rebound ball velocities, contact time, and coefficient of restitution were determined as basic parameters of the impact. As the inbound ball velocity increased, the maximum normal compression ratio increased while the maximum tangential compression ratio, contact time and coefficient of restitution decreased. The ball center displacements during the impact were measured to determine the ball center velocity and acceleration, and the contact force was calculated by the product of the mass and acceleration. The contact force increased almost linearly with the inbound ball velocity, and its relationship agreed well quantitatively with the results from a load-cell, and also agreed well qualitatively with Hertz contact theory.  相似文献   

15.
刘锋  席丰 《固体力学学报》2005,26(4):439-446
基于大变形动力控制方程并利用有限差分离散分析,研究了斜撞击作用下弹塑性悬臂梁的动力响应.通过对屈服函数以及弯矩、轴力在动力响应过程中分布规律的分析,阐明了斜撞击下恳臂梁的弹塑性动力响应模式和斜撞击的轴向分量对变形机制的影响.研究表明,弹塑性响应过程可划分为四个阶段,对应的变形模式为:“压缩塑性区扩展”模式,“广义移行塑性铰”和“压缩塑性区收缩”混合模式,“驻定塑性铰”模式,“弹性自由振动”模式.与刚塑性分析所假定的两相变形模式比较,弹塑性应响分析证实了响应早期的瞬态轴向压缩模式和梁根部“驻定塑性铰”模式的存在性,肯定了刚塑性分析所假定变形模式的主要特征.斜撞击的轴向分量在撞击发生的瞬时主导了梁的变形,使梁呈现同承受横向冲击明显小同的变形规律.随着响应的深入,轴向分量迅速衰减,其对截面屈服的贡献非常微弱,由横向分量引起的弯曲挠动在大部分时间内主导和控制梁的变形.数值计算结果表明,斜撞击载荷的质量、撞击速度和角度是影响梁动力响应的重要因素.  相似文献   

16.
通过落锤冲击实验研究高孔隙率闭孔泡沫铝的动态压缩性能及抗低速冲击特性, 同时通过高速摄影仪观察试件的动态压缩行为, 并记录落锤冲击速度的衰减过程. 结果表明, 高孔隙率闭孔泡沫铝的抗冲击缓冲效果明显, 且在低速冲击条件下其变形特征与准静态变形类似. 采用有限元方法分析了落锤和泡沫中应力的分布特点以及表面摩擦系数对应力分布的影响. 由于摩擦力阻碍了接触面处泡沫的横向位移, 致使其压缩外形呈``鼓形'; 在低速冲击时, 应力在泡沫铝试件内部的传播周期远小于冲击的缓冲时间, 应力波现象并不明显, 应力的变化与准静态压缩时相似. 在考虑接触面上摩擦力的基础上, 通过第2类Lagrange方程建立了落锤-泡沫材料的碰撞解析模型, 将预测的落锤冲击速度的衰减过程分别与实验和有限元结果进行比较, 取得了较为一致的结论, 并进一步讨论了不同冲击速度和材料参数对冲击过程的影响.   相似文献   

17.
Sapphire and magnesium spinel are two commonly used transparent armor materials. Although it is commonly believed that better mechanical properties often result in better field performance, the ballistic performance of spinel is reported to be superior to sapphire despite its inferior mechanical properties. The above discrepancy has been rationalized on the basis of mechanisms of deformation during impact loading. After reviewing the reported ballistic performance results on spinel and sapphire, we will discuss the relevant mechanical properties and their inability to explain the observed paradoxical behavior. We will then present differences in static (15 s duration) and dynamic (100 μs duration) indentation fracture characteristics and compare these observations to fracture modes witnessed during ball-on-rod impact tests. Lastly, the energy absorbed in various deformation mechanisms for each material is compared to draw a rationale for the intriguing behavior of spinel. Fracture along crystallographic planes in sapphire during ball impact allows large fragments to be ejected causing a significant loss in structural integrity and deeper projectile penetration, whereas the mixed mode fracture in spinel produces fine debris which opposes the incoming projectile and causes severe deceleration and erosion of the ball. Thus a mechanism based rationale has been provided to describe the superior performance of spinel over sapphire.  相似文献   

18.
金字塔栅格夹心夹层板动力响应分析   总被引:4,自引:0,他引:4  
本文将金字塔形栅格夹心夹层板假设成均匀夹心夹层板,应用Reissner夹层板理论,对其自振频率以及在简谐荷载下的强迫振动进行了研究,并以简支板为例,得到其解析解,通过与有限元分析进行比较,两者结果吻合良好。并把金字塔形栅格夹层板与同质量实体板进行比较,得出金字塔形栅格夹层板具有更好动力性能。  相似文献   

19.
为探究部分充液多胞元结构的抗冲击防护性能,结合充液内凹胞元的落锤冲击试验,建立了充液内凹胞元、部分充液内凹多胞元结构的冲击动态特性二维FEM数值分析,计算得到了部分充液内凹多胞元结构的变形破坏模式,讨论了不同冲击速度下部分充液内凹多胞元结构的动力学响应特性。结果表明:在充液胞元破损后,水介质会流入相邻未充液胞元,形成二次鼓胀吸能效应,从而有效提高结构壁面的变形吸能水平;结构中的充液区域和未充液区域的变形破坏模式分别为鼓胀拉伸和屈曲弯折;随着冲击速度的提高,结构的单位体积应变能以及对初始冲击载荷的削弱作用均得到增强。横向充液方式可以等效为变刚度弹簧的串联布置,该方式仅影响结构的局部刚度,纵向充液方式可以等效为多层变刚度弹簧的并联布置,该方式会影响结构的整体刚度;充液区域与未充液区域的等效刚度呈动态变化,结构变形模式由各区域实时的等效刚度决定。当载荷冲击速度较高时,横向和纵向部分充液内凹多胞元结构对初始冲击载荷的削弱能力均优于未充液内凹多胞元结构。  相似文献   

20.
蒋鹏  李荣强  孔德坊 《力学学报》2002,10(1):108-112
首次采用大变形动力接触有限元法分析了强夯对地基土的冲击碰撞过程 ,锤底接触力和夯沉量过程中直接求得 ,且能模拟夯锤与地基土的多次接触分离过程 ,适应于各种复杂的地基土条件和夯击能条件 ,克服了现有其它方法的不足和缺陷。文章最后给出了系列工程算例 ,验证了本文计算模型的合理型  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号