首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This work is devoted to the application of the super compact finite difference method (SCFDM) and the combined compact finite difference method (CCFDM) for spatial differencing of the spherical shallow water equations in terms of vorticity, divergence, and height. The fourth‐order compact, the sixth‐order and eighth‐order SCFDM, and the sixth‐order and eighth‐order CCFDM schemes are used for the spatial differencing. To advance the solution in time, a semi‐implicit Runge–Kutta method is used. In addition, to control the nonlinear instability, an eighth‐order compact spatial filter is employed. For the numerical solution of the elliptic equations in the problem, a direct hybrid method, which consists of a high‐order compact scheme for spatial differencing in the latitude coordinate and a fast Fourier transform in longitude coordinate, is utilized. The accuracy and convergence rate for all methods are verified against exact analytical solutions. Qualitative and quantitative assessments of the results for an unstable barotropic mid‐latitude zonal jet employed as an initial condition are addressed. It is revealed that the sixth‐order and eighth‐order CCFDMs and SCFDMs lead to a remarkable improvement of the solution over the fourth‐order compact method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L2-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L2-method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.  相似文献   

3.
A new finite element method is presented for the solution of two-dimensional transport problems. The method is based on a weighted residual formulation in which the method of characteristics is combined with the finite element method. This is achieved by orienting sides of the space-time elements joining the nodes at subsequent time levels along the characteristics of the pure advection equation associated with the transport problem. The method is capable of solving numerically the advection--diffusion equation without generating oscillations or numerical diffusion for the whole spectrum of dispersion from diffusion only through mixed dispersion to pure convection. The utility and accuracy of the method are demonstrated by a number of examples in two space dimensions and a comparison of the numerical results with the exact solution is presented in one case. A very favourable feature of the method is the capability of solving accurately advection dominated transport problems with very large time steps for which the Courant number is well over one.  相似文献   

4.
The time-dependent Navier–Stokes equations and the energy balance equation for an incompressible, constant property fluid in the Boussinesq approximation are solved by a least-squares finite element method based on a velocity–pressure–vorticity–temperature–heat-flux ( u –P–ω–T– q ) formulation discretized by backward finite differencing in time. The discretization scheme leads to the minimization of the residual in the l2-norm for each time step. Isoparametric bilinear quadrilateral elements and reduced integration are employed. Three examples, thermally driven cavity flow at Rayleigh numbers up to 106, lid-driven cavity flow at Reynolds numbers up to 104 and flow over a square obstacle at Reynolds number 200, are presented to validate the method.  相似文献   

5.
A finite difference scheme based on flux difference splitting is presented for the solution of the one-dimensional shallow-water equations in open channels, together with an extension to two-dimensional flows. A linearized problem, analogous to that of Riemann for gas dynamics, is defined and a scheme, based on numerical characteristic decomposition, is presented for obtaining approximate solutions to the linearized problem. The method of upwind differencing is used for the resulting scalar problems, together with a flux limiter for obtaining a second-order scheme which avoids non-physical, spurious oscillations. The scheme is applied to a one-dimensional dam-break problem, and to a problem of flow in a river whose geometry induces a region of supercritical flow. The scheme is also applied to a two-dimensional dam-break problem. The numerical results are compared with the exact solution, or other numerical results, where available.  相似文献   

6.
A one-dimensional transport test applied to some conventional advective Eulerian schemes shows that linear stability analyses do not guarantee the actual performances of these schemes. When adopting the Lagrangian approach, the main problem raised in the numerical treatment of advective terms is a problem of interpolation or restitution of the transported function shape from discrete data. Several interpolation methods are tested. Some of them give excellent results and these methods are then extended to multi-dimensional cases. The Lagrangian formulation of the advection term permits an easy solution to the Navier-Stokes equations in primitive variables V, p, by a finite difference scheme, explicit in advection and implicit in diffusion. As an illustration steady state laminar flow behind a sudden enlargement is analysed using an upwind differencing scheme and a Lagrangian scheme. The importance of the choice of the advective scheme in computer programs for industrial application is clearly apparent in this example.  相似文献   

7.
A numerical model for electro-osmotic flow is described. The advecting velocity field is computed by solving the incompressible Navier–Stokes equation. The method uses a semi-implicit multigrid algorithm to compute the divergence-free velocity at each grid point. The finite differences are second-order accurate and centered in space; however, the traditional second-order compact finite differencing of the Poisson equation for the pressure field is shown not to conserve energy in the inviscid limit. We have designed a non-compact finite differencing for the Laplacian in the pressure equation that allows exact energy conservation and affords second-order accuracy. The model also incorporates a new numerical method for passive scalar advection, called parcel advection, which accurately predicts the evolution of a passively traveling scalar pulse without requiring the addition of any artificial diffusion. The algorithm is used to confirm the experimentally observed asymmetric concentration profile that arises when an external pressure drop is imposed on electro-osmotic flow. Received 25 January 2001 and accepted 10 May 2002 Published online 30 October 2002 Communicated by H.J.S. Fernando  相似文献   

8.
We present a simple and efficient finite element method to solve the Navier-Stokes equations in primitive variables V, p. It uses (a) an explicit advection step, by upwind differencing. Improvement with regard to the classical upwind differencing scheme of the first order is realized by accurate calculation of the characteristic curve across several elements, and higher order interpolation; (b) an implicit diffusion step, avoiding any theoretical limitation on the time increment, and (c) determination of the pressure field by solving the Poisson equation. Two laminar flow calculations are presented and compared to available numerical and experimental results.  相似文献   

9.
Stream function–vorticity finite element solution of two-dimensional incompressible viscous flow and natural convection is considered. Steady state solutions of the natural convection problem have been obtained for a wide range of the two independent parameters. Use of boundary vorticity formulae or iterative satisfaction of the no-slip boundary condition is avoided by application of the finite element discretization and a displacement of the appropriate discrete equations. Solution is obtained by Newton–Raphson iteration of all equations simultaneously. The method then appears to give a steady solution whenever the flow is physically steady, but it does not give a steady solution when the flow is physically unsteady. In particular, no form of asymmetric differencing is required. The method offers a degree of economy over primitive variable formulations. Physical results are given for the square cavity convection problem. The paper also reports on earlier work in which the most commonly used boundary vorticity formula was found not to satisfy the no-slip condition, and in which segregated solution procedures were attempted with very minimal success.  相似文献   

10.
The development of inviscid and viscous flow solvers for both structured and unstructured meshes is presented in this paper. The solution method is the distribution-formula scheme. This is an explicit, cell-vertex, finite volume method which is essentially second-order accurate in both space and time. The Euler and Navier-Stokes equations are integrated over each finite volume cell to determine the change in flow properties (e.g. density) for the cell. Distribution formulas are then used to distribute such changes to the surrounding vertices. Increments in each vertex (which is a calculation point) thus consist of contributions from the surrounding cells. The original discretization technique involves central differencing and is simple, robust and computationally efficient. In this work, starting with inviscid flow simulations using the original scheme on structured grids, improvements are subsequently made to the scheme by replacing the central differencing portion with MUSCL type higher-order upwind differencing. Numerical investigations with the improved scheme are performed using inviscid flow simulations on structured grids. Upon establishing improved accuracy, stability and excellent shock capturing properties, further extension to viscous flow computations on unstructured adaptive meshes is implemented. Results are presented for laminar, viscous flow over a NACA 0012 airfoil.  相似文献   

11.
We present new finite difference schemes for the incompressible Navier–Stokes equations. The schemes are based on two spatial differencing methods; one is fourth-order-accurate and the other is sixth-order accurate. The temporal differencing is based on backward differencing formulae. The schemes use non-staggered grids and satisfy regularity estimates, guaranteeing smoothness of the solutions. The schemes are computationally efficient. Computational results demonstrating the accuracy are presented. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
An inexact Newton method is used to solve the steady, incompressible Navier–Stokes and energy equation. Finite volume differencing is employed on a staggered grid using the power law scheme of Patankar. Natural convection in an enclosed cavity is studied as the model problem. Two conjugate-gradient -like algorithms based upon the Lanczos biorthogonalization procedure are used to solve the linear systems arising on each Newton iteration. The first conjugate-gradient-like algorithm is the transpose-free quasi-minimal residual algorithm (TFQMR) and the second is the conjugate gradients squared algorithm (CGS). Incomplete lower-upper (ILU) factorization of the Jacobian matrix is used as a right preconditioner. The performance of the Newton- TFQMR algorithm is studied with regard to different choices for the TFQMR convergence criteria and the amount of fill-in allowed in the ILU factorization. Performance data are compared with results using the Newton-CGS algorithm and previous results using LINPACK banded Gaussian elimination (direct-Newton). The inexact Newton algorithms were found to be CPU competetive with the direct-Newton algorithm for the model problem considered. Among the inexact Newton algorithms, Newton-CGS outperformed Newton- TFQMR with regard to CPU time but was less robust because of the sometimes erratic CGS convergence behaviour.  相似文献   

13.
An implicit finite element method is presented for the solution of steady and unsteady inviscid compressible flows on triangular meshes under transonic conditions. The method involves a first-order time-stepping scheme with a finite element discretization that reduces to central differencing on a rectangular mesh. On a solid wall the slip condition is prescribed and the pressure is obtained from an approximation of the normal momentum equation. With this solver no artificial viscosity is added to ensure the success of the calculation. Numerical examples are given for steady and unsteady cases.  相似文献   

14.
In this work we present a numerical method for solving the incompressible Navier–Stokes equations in an environmental fluid mechanics context. The method is designed for the study of environmental flows that are multiscale, incompressible, variable‐density, and within arbitrarily complex and possibly anisotropic domains. The method is new because in this context we couple the embedded‐boundary (or cut‐cell) method for complex geometry with block‐structured adaptive mesh refinement (AMR) while maintaining conservation and second‐order accuracy. The accurate simulation of variable‐density fluids necessitates special care in formulating projection methods. This variable‐density formulation is well known for incompressible flows in unit‐aspect ratio domains, without AMR, and without complex geometry, but here we carefully present a new method that addresses the intersection of these issues. The methodology is based on a second‐order‐accurate projection method with high‐order‐accurate Godunov finite‐differencing, including slope limiting and a stable differencing of the nonlinear convection terms. The finite‐volume AMR discretizations are based on two‐way flux matching at refinement boundaries to obtain a conservative method that is second‐order accurate in solution error. The control volumes are formed by the intersection of the irregular embedded boundary with Cartesian grid cells. Unlike typical discretization methods, these control volumes naturally fit within parallelizable, disjoint‐block data structures, and permit dynamic AMR coarsening and refinement as the simulation progresses. We present two‐ and three‐dimensional numerical examples to illustrate the accuracy of the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
关于气动声学数值计算的方法与进展   总被引:1,自引:0,他引:1  
气动声学数值计算是近年才出现的研究领域。本文介绍了气动声学数值计算的方法和有关的问题、边界条件的处理以及计算非线性声波的数值方法和进展。讨论了计算气动声学(CAA)的特性及其与计算流体力学(CFD)的差异,指出气动声学数值方法的关键是建立能保持色散关系的差分方程和正确处理无反射边界条件。对于非线性声波传播的问题,为了得到正确的解,应注意提高差分格式对短波的分辨能力,同时发展能抑制“伪”振荡(短波)而对长波基本不起作用的数值方法。  相似文献   

16.
The issue of boundedness in the discretisation of the convection term of transport equations has been widely discussed. A large number of local adjustment practices has been proposed, including the well‐known total variation diminishing (TVD) and normalised variable diagram (NVD) families of differencing schemes. All of these use some sort of an ‘unboundedness indicator’ in order to determine the parts of the domain where intervention in the discretisation practice is needed. These, however, all use the ‘far upwind’ value for each face under consideration, which is not appropriate for unstructured meshes. This paper proposes a modification of the NVD criterion that localises it and thus makes it applicable irrespective of the mesh structure, facilitating the implementation of ‘standard’ bounded differencing schemes on unstructured meshes. Based on this strategy, a new bounded version of central differencing constructed on the compact computational molecule is proposed and its performance is compared with other popular differencing schemes on several model problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
The coupled problem of forced vibrations and self-heating of thermoviscoelectroelastic shells of revolution with piezoceramic sensor and actuator under monoharmonic loading is solved. The temperature dependence of the complex characteristics of the passive and piezoactive materials is taken into account. The coupled nonlinear problem of thermoelectroelasticity is solved by time-marching integration, using discrete orhogonalization to integrate the equations of elasticity and explicit finite differencing to solve the heat conduction equation. The effect of the dimensions of the sensor and actuator and self-heating on the sensor voltage and on the active damping of forced vibrations of a circular plate under uniform monoharmonic transverse pressure is studied  相似文献   

18.
Variants of the bi-conjugate gradient (Bi-CG) method are used to resolve the problem of slow convergence in CFD when it is applied to complex flow field simulation using higher-order turbulence models. In this study the Navier-Stokes and Reynolds stress transport equations are discretized with an implicit, total variation diminishing (TVD), finite volume formulation. The preconditioning technique of incomplete lower-upper (ILU) factorization is incorporated into the conjugate gradient square (CGS), bi-conjugate gradient stable (Bi-CGSTAB) and transpose-free quasi-minimal residual (TFQMR) algorithms to accelerate convergence of the overall itertive methods. Computations have been carried out for separated flow fields over transonic bumps, supersonic bases and supersonic compression corners. By comparisons of the convergence rate with each other and with the conventional approximate factorization (AF) method it is shown that the Bi-CGSTAB method gives the most efficient convergence rate among these methods and can speed up the CPU time by a factor of 2·4–6·5 as compared with the AF method. Moreover, the AF method may yield somewhat different results from variants of the Bi-CG method owing to the factorization error which introduces a higher level of convergence criterion.  相似文献   

19.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In the framework of a cell-centered finite volume method (FVM), the advection scheme plays the most important role in developing FVMs to solve complicated fluid flow problems for a wide range of Reynolds numbers. Advection schemes have been widely developed for FVMs employing pressure-velocity coupling methodology in the incompressible flow limit. In this regard, the physical influence upwind scheme (PIS) is developed for a cell-centered finite volume coupled solver (FVCS) using a pressure-weighted interpolation method for linking the pressure and velocity fields. The well-known exponential differencing scheme and skew upwind differencing scheme are also deployed in the current FVCS and their numerical results are presented. The accuracy and convergence of the present PIS are evaluated solving flow in a lid-driven square cavity, a lid-driven skewed cavity, and over a backward-facing step (BFS). The flow within the lid-driven square cavity is numerically solved at Reynolds numbers from 400 to 10 000 on a relatively coarse mesh with respect to other reported solutions. The lid-driven skewed cavity test case at Reynolds number of 1000 demonstrates the numerical performance of the present PIS on nonorthogonal grids. The flow over a BFS at Reynolds number of 800 is numerically solved to examine capabilities of current FVCS employing the current PIS in inlet-outlet flow computations. The numerical results obtained by the current PIS are in excellent agreement with those of benchmark solutions of corresponding test cases. Incorporating implicit role of pressure terms in a pressure-weighted interpolation method and development of PIS provides satisfactory solution convergence alongside the numerical accuracy for the current FVCS. A particular numerical verification is performed for the V velocity calculation within the BFS flow field, which confirms the reliability of present PIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号