首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of mean flame curvature on reaction progress variable gradient, $\nabla c$ , alignment with local turbulent strain rate are studied based on three-dimensional Direct Numerical Simulation (DNS) data of turbulent premixed flame kernels with different initial radii under decaying turbulence. A statistically planar flame is also considered in order to compare the results obtained from the kernels with a flame of zero mean curvature. It is found that the dilatation rate effects diminish with decreasing kernel radius due to defocusing of heat in the positively curved regions. This gives rise to a decrease in the extent of reaction progress variable gradient alignment with most extensive principal strain rate with decreasing kernel radius. The modelling implications of the statistics of the alignment of $\nabla c$ with local strain rate have been studied in terms of scalar dissipation rate transport. A new modelling methodology for the contribution of the scalar-turbulence interaction term in the transport equation for the mean scalar dissipation is suggested addressing the reduced effects of dilatation rate for flame kernels and the diminished value of turbulent straining at the small length scales at which turbulence interacts with small flame kernels. The performance of the new models is found to be satisfactory while comparing to DNS results. The existing models for the dilatation contribution and the combined chemical reaction and molecular dissipation contributions to the transport of mean scalar dissipation, which were originally proposed for statistically planar flames, are found to satisfactorily predict the corresponding quantities for turbulent flame kernels.  相似文献   

2.
It is unclear whether turbulent flame speed scalings established in low speed regimes are applicable to supersonic flames. To investigate this question, the canonical flame kernel is investigated in a scramjet-like channel having a one degree wall divergence. The growth, shape and internal kernel dynamics are investigated. Results are presented for three Mach numbers, four equivalence ratios, and three turbulence generators. Schlieren photography provides flame images for growth rate statistics and particle image velocimetry (PIV) provides turbulence statistics and investigation of internal kernel dynamics. Supersonic flame kernels are self-propagating and respond to the equivalence ratio in a fashion that is similar to low speed flames. However, supersonic flame kernels have features that are not present in subsonic flame kernels. Baroclinicity, resulting from pressure-density misalignment, creates a reacting vortex ring structure. Further, the mean kernel shape has a Mach number dependence and the vortex ring enhances the turbulent flame speed through entrainment of reactants and augmented flame surface growth. Hence, the previously established (low speed) flame speed scalings are inappropriate for supersonic flame kernels. Drawing motivation from vortex ring literature, the ring propagation velocity is used as the characteristic velocity and a new flame speed scaling is proposed.  相似文献   

3.
A subgrid scale flame surface density combustion model for the Large Eddy Simulation (LES) of premixed combustion is derived and validated. The model is based on fractal characteristics of the flame surface, assuming a self similar wrinkling of the flame between smallest and largest wrinkling length scales. Experimental and direct numerical simulation databases as well as theoretical models are used to derive a model for the fractal parameters, namely the cut-off lengths and the fractal dimension suitable in the LES context. The combustion model is designed with the intent to simulate low as well as high Reynolds number premixed turbulent flame propagation and with a focus on correct scaling with pressure. The combustion model is validated by simulations of turbulent Bunsen flames with methane and propane fuel at pressure levels between 0.1 MPa and 2 MPa and at turbulence levels of $0 < u^{\prime }/s_{L}^{0} < 11$ , conditions typical for spark ignition engines. The predicted turbulent flame speed is in a very good agreement with the experimental data and a smooth transition from resolved flame wrinkling to fully modelled, nearly subgrid-only wrinkling is realized. Evaluating the influence of mesh resolution shows a predicted mean flame surface and turbulent flame speed independent of mesh resolution for cases with 9–86 % resolved flame surface. Additional simulations of a highly turbulent jet flame at 0.1 MPa and 0.5 MPa and the comparison with experimental data in terms of flame shape, velocity field and turbulent fluctuations validates the model also at conditions typical for gas turbines.  相似文献   

4.
We present an original timesaving joint RANS/LES approach to simulate turbulent premixed combustion. It is intended mainly for industrial applications where LES may not be practical. It is based on successive RANS/LES numerical modelling, where turbulent characteristics determined from RANS simulations are used in LES equations for estimation of the subgrid chemical source and viscosity. This approach has been developed using our TFC premixed combustion model, which is based on a generalization of the Kolmogorov’s ideas. We assume existence of small-scale statistically equilibrium structures not only of turbulence but also of the reaction zones. At the same time, non-equilibrium large-scale structures of reaction sheets and turbulent eddies are described statistically by model combustion and turbulence equations in RANS simulations or follow directly without modelling in LES. Assumption of small-scale equilibrium gives an opportunity to express the mean combustion rate (controlled by small-scale coupling of turbulence and chemistry) in the RANS and LES sub-problems in terms of integral or subgrid parameters of turbulence and the chemical time, i.e. the definition of the reaction rate is similar to that of the mean dissipation rate in turbulence models where it is expressed in terms of integral or subgrid turbulent parameters. Our approach therefore renders compatible the combustion and turbulent parts of the RANS and LES sub-problems and yields reasonable agreement between the RANS and averaged LES results. Combining RANS simulations of averaged fields with LES method (and especially coupled and acoustic codes) for simulation of corresponding nonstationary process (and unsteady combustion regimes) is a promising strategy for industrial applications. In this work we present results of simulations carried out employing the joint RANS/LES approach for three examples: High velocity premixed combustion in a channel, combustion in the shear flow behind an obstacle and the impinging flame (a premixed flame attached to an obstacle).  相似文献   

5.
This paper presents pore scale simulation of turbulent combustion of air/methane mixture in porous media to investigate the effects of multidimensionality and turbulence on the flame within the pores of porous media. In order to investigate combustion in the pores of porous medium, a simple but often used porous medium consisting of a staggered arrangement of square cylinders is considered in the present study. Results of turbulent kinetic energy, turbulent viscosity ratio, temperature, flame speed, convective heat transfer and thermal conductivity are presented and compared for laminar and turbulent simulations. It is shown that the turbulent kinetic energy increases from the inlet of burner, because of turbulence created by the solid matrix with a sudden jump or reduction at the flame front due to increase in temperature and velocity. Also, the pore scale simulation revealed that the laminarization of flow occurs after flame front in the combustion zone and turbulence effects are important mainly in the preheat zone. It is shown that turbulence enhances the diffusion processes in the preheat zone, but it is not enough to affect the maximum flame speed, temperature distribution and convective heat transfer in the porous burner. The dimensionless parameters associated with the Borghi–Peters diagram of turbulent combustion have been analyzed for the case of combustion in porous media and it is found that the combustion in the porous burner considered in the present study concerns the range of well stirred reactor very close to the laminar flame region.  相似文献   

6.
Three-dimensional Direct Numerical Simulations (DNS) in canonical configuration have been employed to study the combustion of mono-disperse droplet-mist under turbulent flow conditions. A parametric study has been performed for a range of values of droplet equivalence ratio ?d, droplet diameter ad and root-mean-square value of turbulent velocity u. The fuel is supplied entirely in liquid phase such that the evaporation of the droplets gives rise to gaseous fuel which then facilitates flame propagation into the droplet-mist. The combustion process in gaseous phase takes place predominantly in fuel-lean mode even for ?d>1. The probability of finding fuel-lean mixture increases with increasing initial droplet diameter because of slower evaporation of larger droplets. The chemical reaction is found to take place under both premixed and non-premixed modes of combustion: the premixed mode ocurring mainly under fuel-lean conditions and the non-premixed mode under stoichiometric or fuel-rich conditions. The prevalence of premixed combustion was seen to decrease with increasing droplet size. Furthermore, droplet-fuelled turbulent flames have been found to be thicker than the corresponding turbulent stoichiometric premixed flames and this thickening increases with increasing droplet diameter. The flame thickening in droplet cases has been explained in terms of normal strain rate induced by fluid motion and due to flame normal propagation arising from different components of displacement speed. The statistical behaviours of the effective normal strain rate and flame stretching have been analysed in detail and detailed physical explanations have been provided for the observed behaviour. It has been found that the droplet cases show higher probability of finding positive effective normal strain rate (i.e. combined contribution of fluid motion and flame propagation), and negative values of stretch rate than in the stoichiometric premixed flame under similar flow conditions, which are responsible for higher flame thickness and smaller flame area generation in droplet cases.  相似文献   

7.

The effects of varying turbulence intensity and turbulence length scale on premixed turbulent flame propagation are investigated using Direct Numerical Simulation (DNS). The DNS dataset contains the results of a set of turbulent flame simulations based on separate and systematic changes in either turbulence intensity or turbulence integral length scale while keeping all other parameters constant. All flames considered are in the thin reaction zones regime. Several aspects of flame behaviour are analysed and compared, either by varying the turbulence intensity at constant integral length scale, or by varying the integral length scale at constant turbulence intensity. The turbulent flame speed is found to increase with increasing turbulence intensity and also with increasing integral length scale. Changes in the turbulent flame speed are generally accounted for by changes in the flame surface area, but some deviation is observed at high values of turbulence intensity. The probability density functions (pdfs) of tangential strain rate and mean flame curvature are found to broaden with increasing turbulence intensity and also with decreasing integral length scale. The response of the correlation between tangential strain rate and mean flame curvature is also investigated. The statistics of displacement speed and its components are analysed, and the findings indicate that changes in response to decreasing integral length scale are broadly similar to those observed for increasing turbulence intensity, although there are some interesting differences. These findings serve to improve current understanding of the role of turbulence length scales in flame propagation.

  相似文献   

8.
CH double-pulsed PLIF measurement in turbulent premixed flame   总被引:1,自引:0,他引:1  
The flame displacement speeds in turbulent premixed flames have been measured directly by the CH double-pulsed planar laser-induced fluorescence (PLIF). The CH double-pulsed PLIF systems consist of two independent conventional CH PLIF measurement systems and laser beams from each laser system are led to same optical pass using the difference of polarization. The highly time-resolved measurements are conducted in relatively high Reynolds number turbulent premixed flames on a swirl-stabilized combustor. Since the time interval of the successive CH PLIF can be selected to any optimum value for the purpose intended, both of the large scale dynamics and local displacement of the flame front can be discussed. By selecting an appropriate time interval (100–200 μs), deformations of the flame front are captured clearly. Successive CH fluorescence images reveal the burning/generating process of the unburned mixtures or the handgrip structures in burnt gas, which have been predicted by three-dimensional direct numerical simulations of turbulent premixed flames. To evaluate the local flame displacement speed directly from the successive CH images, a flame front identification scheme and a displacement vector evaluation scheme are developed. Direct measurements of flame displacement speed are conducted by selecting a minute time interval (≈30 μs) for different Reynolds number (Re λ = 63.1–115.0). Local flame displacement speeds coincide well for different Reynolds number cases. Furthermore, comparisons of the mean flame displacement speed and the mean fluid velocity show that the convection in the turbulent flames will affect the flame displacement speed for high Reynolds number flames.  相似文献   

9.
To allow for a reliable examination of the interaction between velocity fluctuations, acoustics and combustion, a novel numerical procedure is discussed in which a spectral solution of the Navier–Stokes equations is directly associated to a high-order finite difference fully compressible DNS solver (sixth order PADE). Using this combination of high-order solvers with accurate boundary conditions, simulations have been performed where a turbulent premixed V-shape flame develops in grid turbulence. In the light of the DNS results, a sub-model for premixed turbulent combustion is analyzed. To cite this article: R. Hauguel et al., C. R. Mecanique 333 (2005).  相似文献   

10.
Direct numerical simulations (DNS) of a hot combustion product jet interacting with a lean premixed hydrogen-air coflow are conducted to fundamentally investigate turbulent jet ignition (TJI) in a three-dimensional configuration. TJI is an efficient method for initiating and controlling combustion in ultra-lean combustion systems. Fully compressible gas dynamics and species equations are solved with high order finite difference methods. The hydrogen-air reaction is simulated with a reliable detailed chemical kinetics mechanism. The physical processes involved in the TJI-assisted combustion are investigated by considering the flame heat release, temperature, species concentrations, vorticity, and Baroclinc torque. The complex turbulent flame and flow structures are delineated in three main: i) hot product jet, ii) burned-mixed, and iii) flame zones. In the TJI-assisted combustion, the flow structures and the flame features such as flame speed, temperature, and species distribution are found to be quite different than those in “standard” turbulent premixed combustion due to the existence of a high energy turbulent hot product jet. The flow structures and statistics are also found to be different than those normally seen in non-isothermal non-reacting jets.  相似文献   

11.
Despite significant advances in the understanding and modelling of turbulent combustion, no general model has been proposed for simulating flames in industrial combustion devices. Recently, the increase in computational possibilities has raised the hope of directly solving the large turbulent scales using large eddy simulation (LES) and capturing the important time-dependant phenomena. However, the chemical reactions involved in combustion occur at very small scales and the modelling of turbulent combustion processes is still required within the LES framework. In the present paper, a recently presented model for the LES of turbulent premixed flames is presented, analysed and discussed. The flamelet hypothesis is used to derive a filtered source term for the filtered progress variable equation. The model ensures proper flame propagation. The effect of subgrid scale (SGS) turbulence on the flame is modelled through the flame-wrinkling factor. The present modelling of the source term is successfully tested against filtered direct numerical simulation (DNS) data of a V-shape flame. Further, a premixed turbulent flame, stabilised behind an expansion, is simulated. The predictions agree well with the available experimental data, showing the capabilities of the model for performing accurate simulations of unsteady premixed flames.  相似文献   

12.
A new modeling strategy is developed to introduce tabulated chemistry methods in the LES of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when the subgrid scale turbulence vanishes. The filtered flame structure is mapped by 1D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed. The methodology is applied to 1D and 2D filtered laminar flames. These computations show the capability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by introducing subgrid scale wrinkling effects on the flame front propagation. Finally, the LES of a 3D turbulent premixed flame is performed. To cite this article: R. Vicquelin et al., C. R. Mecanique 337 (2009).  相似文献   

13.
In order to determine the mean rate of product creation within the framework of the Turbulent Flame Closure (TFC) model of premixed combustion, the model is combined with a simple closure of turbulent scalar flux developed recently by the present authors based on the flamelet concept of turbulent burning. The model combination is assessed by numerically simulating statistically planar, one-dimensional, developing premixed flames that propagate in frozen turbulence. The mean rate of product creation yielded by the combined model decreases too slowly at the trailing edges of the studied flames, with the effect being more pronounced at longer flame-development times and larger ratios of rms turbulent velocity u′ to laminar flame speed S L . To resolve the problem, the above closure of turbulent scalar flux is modified and the combination of the modified closure and TFC model yields reasonable behaviour of the studied rate. In particular, simulations indicate an increase in the mean combustion progress variable associated with the maximum rate by u′/S L , in line with available DNS data. Finally, the modified closure of turbulent scalar flux is validated by computing conditioned velocities and turbulent scalar fluxes in six impinging-jet flames. The use of the TFC model for simulating such flames is advocated.  相似文献   

14.
A simple model of turbulent scalar flux developed recently by the present authors is applied to determine the direction of the flux in a statistically planar one-dimensional premixed flame that does not affect turbulence and has self-similar mean structure. Results obtained in the case of statistically stationary turbulence indicate that transition from countergradient to gradient turbulent scalar transport may occur during flame development, as the peak mean rate of product creation moves to the trailing edge of the flame brush. In the case of decaying turbulence, the opposite transition (from gradient to countergradient transport) was simulated in line with available DNS data. In both cases, transition instant depends strongly on turbulence and mixture characteristics. In particular, countergradient transport is suppressed by an increase in the rms turbulent velocity and by a decrease in the laminar flame speed or density ratio, in line with available experimental and DNS data. The obtained results lend qualitative support to the model of turbulent scalar flux addressed in the present work.  相似文献   

15.
Turbulent combustion of mono-disperse droplet-mist has been analysed based on three-dimensional Direct Numerical Simulations (DNS) in canonical configuration under decaying turbulence for a range of different values of droplet equivalence ratio (?d), droplet diameter (ad) and root-mean-square value of turbulent velocity (u). The fuel is supplied in liquid phase and the evaporation of droplets gives rise to gaseous fuel for the flame propagation into the droplet-mist. It has been found that initial droplet diameter, turbulence intensity and droplet equivalence ratio can have significant influences on the volume-integrated burning rate, flame surface area and burning rate per unit area. The droplets are found to evaporate predominantly in the preheat zone, but some droplets penetrate the flame front, reaching the burned gas side where they evaporate and some of the resulting fuel vapour diffuses back towards the flame front. The combustion process in gaseous phase takes place predominantly in fuel-lean mode even for ?d > 1. The probability of finding fuel-lean mixture increases with increasing initial droplet diameter because of slower evaporation of larger droplets and this predominantly fuel-lean mode of combustion exhibits the attributes of low Damköhler number combustion and gives rise to thickening of flame with increasing droplet diameter. The chemical reaction is found to take place under both premixed and non-premixed modes of combustion and the relative contribution of non-premixed combustion to overall heat release increases with increasing droplet size. The statistical behaviours of the flame propagation and mode of combustion have been analysed in detail and detailed physical explanations have been provided for the observed behaviour.  相似文献   

16.
The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.  相似文献   

17.
In the present study, Reynolds Averaged Navier Stokes (RANS) simulations are applied to a series of turbulent V-shaped flames. Two formulations of Conditional Source-term Estimation (CSE) are developed using singly and doubly conditioned averages for turbulent premixed and partially premixed flames, respectively. Detailed chemistry is included. Conditionally averaged chemical source terms are closed by conditional averaged scalars which are obtained by inverting an integral equation. The objectives are to study a turbulent premixed V-shaped flame using the premixed CSE approach and apply the Doubly Conditional CSE (DCSE) combustion model to a case of stratified combustion. The partially premixed implementation involves double conditioning on two variables, mixture fraction and progress variable. The present study represents the first application of DCSE for a series of turbulent stratified flames. First, CSE is analysed for fully premixed conditions. A sensitivity analysis on the number of CSE ensembles and different scalar dissipation model closures is performed. Good results are obtained in terms of velocity and progress variable profiles. Finally, the partially premixed formulation is applied to the stratified case at three different conditions, corresponding to two different turbulence grids and three different profiles of the equivalence ratio, providing promising results.  相似文献   

18.
Influences of acoustic instabilities on premixed turbulent-flames have been studied experimentally in a Taylor–Couette (TC) combustor for downward flame propagation in a turbulent flow-field generated in the annulus between two cylinders. Flow-field velocities were measured at a fixed location upstream of the propagating flame using laser-doppler velocimetry, while flame speeds were determined from video-recorded images. It is found that the existence of pre-ignition turbulence in the combustor (generated by rotation of the combustor-cylinder walls) does not eliminate acoustic instabilities, however as the level of pre-ignition turbulence is increased the influence of the secondary acoustic instability on the turbulent-flame speed becomes insignificant. For low intensities of pre-ignition turbulence the flame is found to accelerate during the latter stages of flame propagation, while for high levels of pre-ignition turbulence the flame propagates at a statistically constant speed, even though velocity fluctuations have been substantially amplified by the time the flame reaches the bottom end of the combustor as a result of acoustic instability.  相似文献   

19.
The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement a transported Probability Density Function modelling framework into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid should resolve flame-like structures that arise from solution of the Stochastic Fields equation. Through analysis of Stochastic Fields simulations of a freely-propagating planar turbulent premixed flame, it is shown that the flame-like structures in the Stochastic Fields simulations can be orders of magnitude narrower than the LES filter length scale. The under-resolution is worst for low Karlovitz number combustion, where the thickness of the Stochastic Fields flame structures is on the order of the laminar flame thickness. The effect of resolution on LES predictions is then assessed by performing LES of a laboratory Bunsen flame and comparing the effect of refining the grid spacing and filter length scale independently. The usual practice of setting the LES filter length scale equal to grid spacing leads to severe under-resolution and numerical thickening of the flame, and to substantial error in the turbulent flame speed. The numerical resolution required for accurate solution of the Stochastic Fields equations is prohibitive for many practical applications involving high-pressure premixed combustion. This motivates development of a Thickened Stochastic Fields approach (Picciani et al. Flow Turbul. Combust. X, YYY (2018) in order to ensure the numerical accuracy of Stochastic Fields simulations.  相似文献   

20.
In order to simulate the turbulent combustion process occurring in spark-ignition (IC) engines, it is necessary to provide suitable and numerically economical models, the latter being particularly important in the application to industrial problems. Moreover, these models must deliver sufficiently accurate results for the unsteady operation of spark combustion engines, concerning variable geometries, temperatures, pressures and charge development in different configurations. In this work different turbulent combustion models for premixed hydrocarbon combustion are compared with respect to their ability to accurately predict the propagation of turbulent perfectly premixed flames. As a first configuration a cylinder of constant volume was studied. Transient calculations were used to simulate the propagation of the turbulent flame and to evaluate the resulting turbulent burning velocity. These calculations were performed for a perfect mixture of air and hydrocarbons at stoichiometric mixture and different initial conditions concerning pressure, temperature and turbulence intensity. As a second configuration a stationary turbulent bunsen-type flame with methane fuel was used to validate the turbulent combustion model of [Lindstedt and Vaos, Combust. Flame 116 (1999) 461] at different pressures. Calculated results were then compared to experimental data of [Kobayashi, Tamura, Maruta and Niioka. In: Proceedings of the 26th Symposium on Combustion, 1996, p. 389] and show excellent agreement for the turbulent burning velocity at several pressure levels using only a single set of model parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号