首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
弓网系统依靠受电弓滑板与接触网导线间的滑动电接触为电力列车输送电能,作为1个开放的摩擦学系统,外界环境对其服役行为具有显著影响. 本文中利用往复式载流摩擦磨损试验机,通过加装湿度控制模块,在滑动电接触条件下,以碳棒和铜棒为摩擦配副,研究了环境湿度对碳/铜载流滑动接触副摩擦学行为的影响. 结果表明:载流条件下的摩擦系数高于无电流工况;无电流工况下,平均摩擦系数均随环境湿度的增加而单调降低;但由于累积电弧放电能量、平均接触电阻与相对湿度的正相关性,导致载流条件下在35% RH后的摩擦系数几乎不受环境湿度的影响. 进一步发现,无电流工况下,碳棒上的黏着磨损和氧化磨损随相对湿度的增加逐步减缓,载流工况下,存在1个黏着磨损程度最低的最佳湿度值,出现在55% RH附近. 高湿环境下,加速了碳/铜载流滑动过程中碳棒磨损表面分子结构的变化.   相似文献   

2.
针对航天器滑动电接触部件特殊的真空载流服役要求,利用建立的真空载流摩擦试验平台,探索铜基材织构化表面喷涂NbSe2涂层作为空间新型导电润滑材料的可能性. 研究条状和网状不同织构以及各自在不同织构密度条件下喷涂NbSe2涂层的真空载流摩擦学性能和影响作用规律;对比现役电镀金涂层,探讨其在真空载流条件下摩擦学和电接触行为优势. 结果表明:网格状较条状织构表面喷涂NbSe2涂层的载流摩擦学性能更好,而且随织构密度的增加,减摩耐磨性能得到提高. 织构间距为200 μm的网格状织构表面喷涂的NbSe2涂层展现出最佳的真空载流摩擦学性能. 相较于现役的金电镀层,其在真空载流摩擦条件下展现出更加优异的摩擦学和电接触性能,摩擦系数由0.25降至0.05,接触电压与现役材料处于同一量级,电噪音波动明显改善,由0.09V降至0.04V.   相似文献   

3.
吴彼  张振波  李曙 《摩擦学学报》2023,(10):1099-1117
机械产品中的摩擦磨损问题不可避免,且严重影响装备性能与寿命可靠性。航空发动机是飞机的心脏,针对该类复杂机械产品的摩擦磨损问题更应得到高度重视.通过材料摩擦学行为调控,可有效减轻或排除航空发动机中的摩擦磨损问题,大幅抑制发动机功能精度衰减,提高其寿命稳定性.为系统有序地开展航空发动机材料摩擦学研究,在本文中以典型三代涡扇发动机为例,按冷端至热端结构顺序,阐述进气道、风扇、中介机匣、压气机、燃烧室、涡轮和尾喷口等关键部位涉及摩擦磨损部件及材料的摩擦学服役工况、主要磨损类型和磨损机制.结合发动机整机故障分析结果,有针对性的选择4种具有代表性的航发材料作为摩擦学重点研究对象,即叶片尖端与封严涂层的高速刮擦、主轴轴承滚动接触疲劳与滑擦损伤、钛合金叶片的微动损伤、动密封装置中石墨的摩擦磨损及其寿命评价台架试验.从材料摩擦学损伤演变规律、磨损机制、耐磨功能设计和表面改性等角度综述国内外研究进展,提出航发材料摩擦学研究技术路线,即从材料级摩擦磨损实验复现航发零件磨损失效特征出发,实现基于摩擦学行为调控原理获得材料耐磨减摩功能化改进,最终采用模拟工况摩擦学实验台架验证新材料摩擦磨损性能.此外,针对新一代...  相似文献   

4.
针对空间滑动电接触金基润滑涂层在制备方法以及失效机理认识方面存在的不足,探索采用绿色磁控溅射法制备金薄膜. 研究了偏压对薄膜微观结构、力学以及真空载流摩擦学性能的影响规律;建立了真空载流服役工况摩擦试验评价条件,可实现接触电流噪音的实时监测,进一步对比传统电镀金涂层,研究了其真空载流摩擦磨损行为差异、主要影响因素及作用机制. 结果表明:在适中的偏压下,薄膜晶粒尺寸小,结构致密光滑,具有高的结合力、硬度、耐磨性以及低的接触电流噪音. 相比于电镀法,磁控溅射法制备的金膜表现出明显光滑致密的结构特征,硬度、磨损率和接触电流噪音大幅改善. 其中光滑致密的结构是抑制微电弧产生的关键因素,可有效减少电弧侵蚀失效.   相似文献   

5.
为探究钢绞线丝间摩擦学性能,考虑钢绞线丝间摩擦接触和往复滑动行为等因素,基于曲杆理论、Archard磨损理论等,建立了周期弯曲钢绞线丝间摩擦学性能求解模型,采用半解析法实现快速求解,并通过与曲杆理论、有限元仿真结果对比以及磨损试验验证模型有效性,进而研究钢绞线丝间磨损深度、摩擦接触滑移等摩擦学性能参数的分布规律,分析载荷幅值、几何结构以及材料属性等对其丝间摩擦学性能的影响.结果表明:钢绞线丝间磨损发生在弯曲中性层外侧,钢丝未接触或接触但未发生滑移之处不发生磨损;弯曲载荷越大,磨损越严重;侧丝半径、捻角越大,丝间接触压力与接触变形均增大,故而磨损加剧;总磨损深度随钢绞线材料的弹性模量和泊松比增大而增大.  相似文献   

6.
地铁钢铝复合式第三轨/受电靴载流摩擦磨损特性研究   总被引:4,自引:0,他引:4  
通过对销-盘摩擦磨损试验机的夹具和控制部分进行改进,研制出载流摩擦磨损试验装置,并采用该装置研究了地铁钢铝复合式第三轨与受电靴摩擦副之间的载流摩擦磨损特性,采用激光三维共焦扫描显微镜和电子能谱仪等微观手段,结合电接触理论分析了摩擦副的载流摩擦磨损机制.结果表明:存在1个法向压应力阈值,当试验的法向压应力大于此阈值时,摩擦系数随着电流的增加而增大,此时电流增加了机械磨损;而当法向压应力小于此阈值时,摩擦系数随着电流的增加而减小,此时电弧烧蚀材料损失量较机械磨损大;钢铝复合式第三轨的主要磨损机制为粘着磨损和磨粒磨损;钢铝复合式第三轨授流时,在一定的列车运行速度下法向压应力阈值是最佳的工作压应力,既能保证顺利授流,又使得摩擦副材料的磨损量较小,确保行车安全,降低维护频率,节约地铁运行成本.  相似文献   

7.
通过在锻钢基材表面沟槽中分别填充灰铸铁HT300、Mn-Cu合金和Mn-Cu阻尼合金材料获得具有时变接触特性的表面,并对锻钢光滑表面试样和时变接触特性表面进行摩擦学试验,研究不同时变接触特性表面对界面摩擦学行为(摩擦噪声、摩擦振动以及磨损行为)的影响. 结果表明:填充HT300的时变接触特性表面缓解了界面磨损,有效延续摩擦系统的稳定状态,抑制摩擦振动和噪声的产生;相反,填充Mn-Cu合金和填充Mn-Cu阻尼合金的时变接触特性表面加剧了界面磨损,加速了摩擦系统不稳定状态的出现,进而激发出高强度的摩擦振动和噪声. 在本研究中,摩擦系统失稳引起摩擦振动和噪声主要归因于摩擦磨损过程中黏着撕裂和犁削等界面作用,填充材料的阻尼特性未能起到减振降噪的效果.   相似文献   

8.
近年来,随着深空探测、超导和量子计算等技术的发展,越来越多的装备需要在极端低温工况下服役,超低温引起的润滑问题日益显现.目前超低温摩擦学研究相对较少,主要集中在材料摩擦学性能的变化研究方面,对其背后作用机制的研究并不深入.超低温下大多数固体润滑材料的耐磨性能变差,难以满足长时间服役需求;材料的摩擦学行为受环境、制备方法以及材料种类等众多因素影响,摩擦学性能变化趋势和程度有所不同,难以形成统一的认识.本文作者从超低温对材料原子和电子运动抑制作用的本质出发,归纳分析了超低温对润滑材料摩擦学性能的影响机制,从超低温引起力学性能变化、摩擦界面间的化学反应活性变化、相结构及界面结构变化以及电子-声子耦合等微观能量耗散形式等4个方面的影响机制进行了介绍,并对未来超低温摩擦学的发展方向和亟需解决的问题进行了展望.  相似文献   

9.
海洋环境下的材料摩擦学研究进展与展望   总被引:6,自引:0,他引:6  
海洋是人类赖以生存的载体,与人类未来发展休戚与共.海洋科学领域的发展常常依赖于海洋专用材料的研究和展.海洋极端环境下的摩擦磨损是制约海洋材料应用与推广的关键问题之一,主要表现在材料在海洋苛刻环境下的腐蚀行为、电化学腐蚀以及材料在载荷和腐蚀环境下的耦合摩擦学行为.本文中分析了海洋环境的特点及其关键摩擦学问题,阐述了海洋环境下的材料摩擦学的研究内涵,对金属材料、高分子材料、陶瓷材料在海洋环境下的摩擦学问题进行了探讨,并结合海洋材料摩擦学现有研究进展及发展趋势,对海洋环境下的材料摩擦学相关研究前景进行了展望.  相似文献   

10.
本文中考察了铝自配副在干摩擦和微量离子液体润滑条件下的载流摩擦学性能.在干摩擦条件下,铝自配副因黏着极易发生卡咬.而微量的离子液体L-P106就可有效润滑铝自配副,摩擦系数可低至0.1左右.无论载流与否,润滑状态均为边界润滑.与无载流条件相比,载流时铝自配副的摩擦系数稍有增大,且在高速(0.79 m/s及以上)磨损由中等程度的磨损转化为严重磨损.电流会导致电侵蚀磨损,从而使磨损加剧.  相似文献   

11.
通过轮轨滚动接触模拟试验研究了干态、施加轨顶摩擦调节剂、润滑油和润滑脂工况下的轮轨摩擦、磨损和损伤行为,分析了不同润滑材料对轮轨滚动接触疲劳损伤的影响. 结果表明:施加轨顶摩擦调节剂可将轮轨摩擦系数调控至0.1~0.3范围内,车轮和钢轨试样磨损率较干态下分别降低了54.9%和26.3%,轮轨表面损伤、塑性变形和滚动接触疲劳损伤明显降低;施加润滑油和润滑脂具有更加显著的润滑和减磨效果,摩擦系数降低至0.1以下,磨损率降低85%以上,但润滑油和润滑脂会进入裂纹内部产生“油楔效应”,导致严重的滚动接触疲劳损伤,而轨顶摩擦调节剂的固体润滑特性则避免了该问题的产生.   相似文献   

12.
为探究金属橡胶微丝的最适直径,研究了不同载荷和速度条件下,金属橡胶不锈钢丝丝径对其小位移摩擦磨损行为影响的规律及机理,建立了磨损深度与丝径之间的定量关系来评定丝径对不锈钢丝摩擦磨损行为的影响. 结果表明:相同载荷、速度条件下,不同丝径实际接触面积的不同导致不锈钢丝的磨损深度随其丝径的增大而减小,且磨损深度随丝径的变化规律呈多项式曲线规律;而摩擦系数与其实际接触形貌和磨屑运动状态有关,不同的磨损状态导致了摩擦系数随丝径的增大而增大;探究表明改变载荷和速度并不影响丝径对不锈钢丝摩擦磨损行为的影响规律;但由于粗丝径试件间实际接触面积的稳定性,使得载荷和速度对粗丝试件的磨损深度、摩擦系数的影响要明显小于对细丝试件的影响.   相似文献   

13.
预制体是复合材料的增强骨架,由成千上万根纤维束织造而成. 预制体中的纤维束由于织造过程中的交织运动会发生不同程度的摩擦损伤,而纤维的磨损会导致预制体力学性能损失率高达9%~12%. 因此,揭示纤维束在织造过程中的摩擦磨损机理对提升预制体力学性能具有重要意义. 本文中综述了近年来有关纤维束摩擦行为的研究进展:首先,概述纤维束-金属和纤维束-纤维束摩擦测试方法的优缺点;其次,分析得出摩擦角度、摩擦频率、预加张力和法向载荷对纤维束摩擦性能的影响机制;最后,总结纤维束摩擦磨损行为的理论分析模型. 本综述中对复合材料预制体成形工艺设计和纤维束摩擦损伤的量化分析具有指导意义.   相似文献   

14.
林国志  梁良 《摩擦学学报》2021,41(5):657-668
采用激光表面纹理化在WC-8Co上制备了微沟槽织构,通过往复式摩擦磨损试验对其与Ti6Al4V接触的耐磨性进行分析,并以无表面微沟槽织构的WC-8Co为对比样品,研究了表面微织构对WC-8Co粘结-扩散磨损特性的影响,揭示了摩擦过程中表面微织构的磨损机理. 结果表明:WC-8Co上的微沟槽对摩擦接触面具有抗粘结作用,在高接触载荷下,这种效应更为明显. 织构表面的抗粘结机制是由微沟槽包裹的碎屑产生的. 此外,与无表面微织构的WC-8Co不同,表面织构化的WC-8Co的磨损最初来源于微沟槽边缘的断裂,随后扩展到摩擦表面. 这种磨损特性归因于微沟槽边缘的高热载荷和机械应力集中,以及激光加工过程中WC晶粒长大与摩擦过程中粘结剂Co扩散的协同效应.   相似文献   

15.
为探索碳纤维束-圆辊的接触机制,本文中采用自制摩擦模拟试验装置,结合薄膜压痕法分析了纤维束接触部位的三维(3D)表面形貌,研究了预加张力和接触角度对碳纤维束-圆辊接触面积的影响规律. 结果表明:碳纤维束-圆辊接触面内的纤维束取向度是影响接触面积的关键因素,当接触角度从60°增加到170°时,纤维束取向度逐渐减小,碳纤维束-圆辊接触面积也逐渐减小,且接触角度为60°时的接触面积是170°时的22倍;当预加张力从0.19 N增加到1.47 N时,纤维束取向度逐渐增大,碳纤维束-圆辊接触面积逐渐增大,且预加张力为1.47 N时的接触面积是0.19 N时的2倍. 在Hertz接触理论的基础上,考虑纤维束取向度建立碳纤维束-圆辊接触面积的理论预测模型,通过试验数据验证了该模型能够准确预测碳纤维束-圆辊的接触面积.   相似文献   

16.
分别以铜包覆石墨和普通石墨作为润滑组元,采用放电等离子烧结技术制备了两种铜基粉末冶金摩擦材料. 在对两种材料进行微观组织、力学及物理性能检测和对比之后,利用MM1000-Ⅱ型惯性制动试验台测试了不同条件下两者的制动摩擦磨损性能,并通过对试验后两种材料的摩擦表面及其三维形貌特征、表面及近表层主要元素分布特点、磨屑特征和摩擦表面物相进行微观分析,研究了石墨表面金属包覆处理对制动条件下铜基粉末冶金摩擦材料摩擦学行为的影响,并结合热力学相关理论解释了引起两种材料制动摩擦学行为差异的原因. 结果表明:石墨表面经铜包覆处理后,会使烧结时石墨与Cu基体间的界面结合得到明显改善,且材料的硬度、致密度和导热系数也可显著提高. 随着制动速度的提高,两种材料的平均摩擦系数和磨损率均逐渐降低;在相同的制动条件下,采用铜包覆石墨作润滑剂时,材料的平均摩擦系数和磨损率均较低,同时材料摩擦表面的几何质量较好. 提高制动速度均能够促进两种材料表面形成摩擦膜,但分别采用铜包覆石墨和普通石墨作润滑组元时,材料表面摩擦膜的形成机制存在明显差异. 采用铜包覆石墨时,材料表面主要形成氧化膜,而采用普通石墨时,由于材料表面存在的较多石墨对氧化反应具有较强的抑制作用,而使得此时表面主要形成石墨膜,且其对材料表面的保护效果不及氧化膜.   相似文献   

17.
本文中采用自主开发的空间摩擦试验机,模拟空间用摩擦副大负荷服役条件(400 N)进行摩擦循环试验,考察了大气环境下空间用铜基粉末冶金摩擦材料的摩擦磨损特性,探讨了摩擦副的可靠性寿命并揭示了其摩擦磨损机理.研究结果表明:摩擦副在模拟大负荷摩擦循环试验中,可划成三个阶段:第一阶段属可靠性使用阶段,摩擦系数合适而稳定,磨损机理以磨粒磨损和氧化磨损为主;第二阶段,摩擦特性发生失稳,摩擦系数周期性变化,磨损机理以氧化磨损为主,接触疲劳磨损为辅;第三阶段,摩擦系数波动较大,磨损机理转变为严重的接触疲劳磨损和氧化磨损,材料失效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号