首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The construction of an integrated numerical model is presented in this paper to deal with the interactions between vegetated surface and saturated subsurface flows. A numerical model is built by integrating the previously developed quasi-three-dimensional (Q3D) vegetated surface flow model with a two-dimensional (2D) saturated groundwater flow model. The vegetated surface flow model is constructed by coupling the explicit finite volume solution of 2D shallow water equations (SWEs) with the implicit finite difference solution of Navier-Stokes equations (NSEs) for vertical velocity distribution. The subsurface model is based on the explicit finite volume solution of 2D saturated groundwater flow equations (SGFEs). The ground and vegetated surface water interaction is achieved by introducing source-sink terms into the continuity equations. Two solutions are tightly coupled in a single code. The integrated model is applied to four test cases, and the results are satisfactory.  相似文献   

2.
We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler–Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler–Voigt equations also require less resolution than simulations of the 3D Euler equations for fixed values of the regularization parameter \(\alpha >0\). Therefore, the new blow-up criteria allow one to gain information about possible singularity formation in the 3D Euler equations indirectly, namely by simulating the better-behaved 3D Euler–Voigt equations. The new criteria are only known to be sufficient criterion for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well known to occur.  相似文献   

3.
In this study, a comparison between the 1D and 2D numerical simulation of transitional flow in open‐channel networks is presented and completely described allowing for a full comprehension of the modeling water flow. For flow in an open‐channel network, mutual effects exist among the channel branches joining at a junction. Therefore, for the 1D study, the whole system (branches and junction) cannot be treated individually. The 1D Saint Venant equations calculating the flow in the branches are then supplemented by various equations used at the junction: a discharge flow conservation equation between the branches arriving and leaving the junction, and a momentum or energy conservation equation. The disadvantages of the 1D study are that the equations used at the junction are of empirical nature due to certain parameters given by experimental results and moreover they often present a reduced field of validity. On the contrary, for the 2D study, the entire network is considered as a single unit and the flow in all the branches and junctions is solved simultaneously. Therefore, we simply apply the 2D Saint Venant equations, which are solved by a second‐order Runge–Kutta discontinuous Galerkin method. Finally, the experimental results obtained by Hager are used to validate and to compare the two approaches 1D and 2D. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Three-dimensional (3D) solutions for the static analysis of doubly curved functionally graded (FG) magneto-electro-elastic shells are presented by an asymptotic approach. In the present formulation, the twenty-nine basic equations are firstly reduced to ten differential equations in terms of ten primary variables of elastic, electric and magnetic fields. After performing through the mathematical manipulation of nondimensionalization, asymptotic expansion and successive integration, we finally obtain recurrent sets of two-dimensional (2D) governing equations for various order problems. These 2D governing equations are merely those derived in the classical shell theory (CST) based on the extended Love–Kirchhoffs' assumptions. Hence, the CST-type governing equations are derived as a first-order approximation to the 3D magneto-electro-elasticity. The leading-order solutions and higher-order corrections can be determined by treating the CST-type governing equations in a systematic and consistent way. The 3D solutions for the static analysis of doubly curved multilayered and FG magneto-electro-elastic shells are presented to demonstrate the performance of the present asymptotic formulation. The coupling magneto-electro-elastic effect on the structural behavior of the shells is studied.  相似文献   

5.
The covariance principle of differential geometry within a four-dimensional (4D) space-time ensures the validity of any equations and physical relations through any changes of frame of reference, due to the definition of the 4D space-time and the use of 4D tensors, operations and operators. This enables to separate covariance (i.e. frame-indifference) and material objectivity (i.e. material-indifference). We propose here a method to build a constitutive relation for thermo-elastic materials using such a 4D formalism. A 4D generalization of the classical variational approach is assumed leading to a model for a general thermo-elastic material. The isotropy of the relation can be ensured by the use of the invariants of variables, which offers new possibilities for the construction of constitutive relations. It is then possible to build a general frame-indifferent but not necessarily material-indifferent constitutive relation. It encompasses both the 3D Eulerian and Lagrangian thermo-elastic isotropic relations for finite transformations.  相似文献   

6.
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.  相似文献   

7.
This paper describes a method of integral equations for solution of the 2D and 3D problems of plate impact on an incompressible fluid of finite depth. The solutions of the equations obtained are investigated analytically and numerically. The behavior of the impact impulse is studied for various fluid depths and aspect ratios of the plate.  相似文献   

8.
The implicit Colebrook–White equation is the accepted method for accurately estimating the friction factor for turbulent flow in pipes. This study reviews 28 explicit equations for approximating the friction factor to integrate both the accuracy to the implicit Colebrook–White equation and the relative computational efficiency of the explicit equations. A range of 901 Reynolds numbers were selected for the review between Re?≥?4 ×103 and? ≤?4 × 108 and 20 relative pipe roughness values were selected between $\varepsilon \mathord{\left/ {\vphantom {\varepsilon D}} \right.}D\ge 10^{-6}\le 10^{-1}$ , thus producing a matrix of 18,020 points for each explicit equation, covering all the values to be encountered in pipeline hydraulic analysis for turbulent flow. The accuracy of the estimation of the friction factor using the explicit equations to the value obtained using the implicit Colebrook–White equation were calculated and reported as absolute, relative percentage and mean square errors. To determine the relative computational efficiency, 300 million friction factor calculations were performed using randomly generated values for the Reynolds number and the relative pipe roughness values between the limits specified for each of the explicit equations and compared to the time taken by the Colebrook–White equation. Finally, 2D and 3D contour models were generated showing both the range and magnitude of the relative percentage accuracy across the complete range of 18,020 points for each explicit equation.  相似文献   

9.
A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck (PNP) theory, the two-dimensional (2D) equations for thin ionic conductor films are obtained from the three-dimensional (3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.  相似文献   

10.
A finite element-based beam analysis for anisotropic beams with arbitrary-shaped cross-sections is developed with the aid of a formal asymptotic expansion method. From the equilibrium equations of the linear three-dimensional (3D) elasticity, a set of the microscopic 2D and macroscopic 1D equations are systematically derived by introducing the virtual work concept. Displacements at each order are split into two parts, such as fundamental and warping solutions. First we seek the warping solutions via the microscopic 2D cross-sectional analyses that will be smeared into the macroscopic 1D beam equations. The variations of fundamental solutions enable us to formulate the macroscopic 1D beam problems. By introducing the orthogonality of asymptotic displacements to six beam fundamental solutions, the end effects of a clamped boundary are kinematically corrected without applying the sophisticated decay analysis method. The boundary conditions obtained herein are applied to composite beams with solid and thin-walled cross-sections in order to demonstrate the efficiency and accuracy of the formal asymptotic method-based beam analysis (FAMBA) presented in this paper. The numerical results are compared to those reported in literature as well as 3D FEM solutions.  相似文献   

11.
An upscaling method is developed for two-phase immiscible incompressible flows in layered reservoirs with good communication between the layers. It takes the effect of gravity into consideration. Waterflooding of petroleum reservoirs is used as a basic example for application of this method. An asymptotic analysis is applied to a system of 2D flow equations for incompressible fluids at high-anisotropy ratios, but low to moderate gravity ratios, which corresponds to the most often found reservoir conditions. The 2D Buckley–Leverett problem is reduced to a system of 1D parabolic equations in a layered reservoir. For low-gravity ratios, it can further be reduced to a system of hyperbolic equations. The number of the 1D equations in the system is equal to the number of layers in the reservoir. The method is tested on different examples of displacement in a layer-cake reservoir. Different combinations of gravity-viscous and anisotropy ratios are tested. Solutions by our method are compared with the results of 2D simulations carried out by the COMSOL solver. The results are comparable, especially if the layers of the reservoirs are further subdivided into sublayers, in order to account better for gravity segregation. The effects of gravity are analyzed.  相似文献   

12.
关联表面分形特性的润滑模型   总被引:1,自引:0,他引:1  
在分配有面粗糙度与材料表面分形特性关系的基础上,将分形特性引入润滑方程,提出了关联表面分形特性的润滑模型,并分析了润滑模型中压力流量因子和剪切流量因子与表面分形维数之间关系。计算结果表明:在相同分形维数(D)下,随着微突体纵横比v的增大,压力流量因子和剪切流量因子相应增大,且其随分形维数D的变化同随油膜粗糙度比H的变化相比呈现出更强的不规则特性,出现局部最大和最小值,并且分辨率较高。  相似文献   

13.
This paper describes development of an integrated shallow surface and saturated groundwater model (GSHAW5). The surface flow motion is described by the 2‐D shallow water equations and groundwater movement is described by the 2‐D groundwater equations. The numerical solution of these equations is based on the finite volume method where the surface water fluxes are estimated using the Roe shock‐capturing scheme, and the groundwater fluxes are computed by application of Darcy's law. Use of a shock‐capturing scheme ensures ability to simulate steady and unsteady, continuous and discontinuous, subcritical and supercritical surface water flow conditions. Ground and surface water interaction is achieved by the introduction of source‐sink terms into the continuity equations. Two solutions are tightly coupled in a single code. The numerical solutions and coupling algorithms are explained. The model has been applied to 1‐D and 2‐D test scenarios. The results have shown that the model can produce very accurate results and can be used for simulation of situations involving interaction between shallow surface and saturated groundwater flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
It remains unknown whether or not smooth solutions of the 3D incompressible MHD equations can develop finite-time singularities. One major difficulty is due to the fact that the dissipation given by the Laplacian operator is insufficient to control the nonlinearity and for this reason the 3D MHD equations are sometimes regarded as “supercritical”. This paper presents a global regularity result for the generalized MHD equations with a class of hyperdissipation. This result is inspired by a recent work of Terence Tao on a generalized Navier–Stokes equations (T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equations, arXiv: 0906.3070v3 [math.AP] 20 June 2009), but the result for the MHD equations is not completely parallel to that for the Navier–Stokes equations. Besov space techniques are employed to establish the result for the MHD equations.  相似文献   

15.
This paper firstly works out basic differential equations of piezoelectric materials expressed in terms of potential functions, which are introduced in the very beginning. These equations are primarily solved through Laplace transformation, semi-infinite Fourier sine transformation and cosine transformation. Secondly, dual equations of dynamic cracks problem in 2D piezoelectric materials are established with the help of Fourier reverse transformation and the introduction of boundary conditions. Finally, according to the character of the Bessel function and by making full use of the Abel integral equation and its reverse transform, the dual equations are changed into the second type of Fredholm integral equations. The investigation indicates that the study approach taken is feasible and has potential to be an effective method to do research on issues of this kind.  相似文献   

16.
17.
This article presents a new hyperchaotic system of four-dimensional quadratic autonomous ordinary differential equations, which has one equilibrium point and two quadratic nonlinearities. Some basic dynamical properties are further investigated by means of Poincaré mapping, parameter phase portraits, and calculated Lyapunov exponents and power spectra. The existence of the hyperchaotic system is verified not only by theoretical analysis but also by conducting a novel fourth-order electronic circuit experiment. Various attractors of experimental results show that this 4D hyperchaotic system is different from the historically proposed system and has good engineering application prospects.  相似文献   

18.
The present works aims at solving the equations of dipolar gradient elasticity via the finite volume method. Initially, a general, mixed, finite volume formulation is stated. As a first approach, the equations of 1D and 2D gradient elasticity are solved via the proposed method. Numerical implementation shows that the suggested model is in excellent agreement with analytic solutions. The approach seems to be promising for extension to 3D problems also.  相似文献   

19.
A simple and accurate boundary-type meshless method of fundamental solutions (MFS) is applied to solve both 2D and 3D Stokes flows based on the dual-potential formulation of velocity potential and stream function vector. Using the dual-potential concept, the solutions of both 2D and 3D Stokes flows are obtained by combining the much simpler fundamental solutions of Laplace (potential) and bi-harmonic equations without using the complicated singular fundamental solutions such as Stokeslets and their derivatives as well as source doublet hypersingularity. The developed algorithm is used to test five numerical experiments for 2D flows: (1) circular cavity, (2) wave-shaped bottom cavity and (3) circular cavity with eccentric rotating cylinder; and for 3D flows: (4) a uniform flow passing a sphere and (5) a uniform flow passing a pair of spheres. Good results are obtained as comparing with solutions of analytical and numerical methods such as FEM, BEM and other meshfree schemes.  相似文献   

20.
利用数值模拟的方法对钱塘江涌潮从杭州湾口开始形成、发展直至消失的全过程进行了深入全面的描写.从杭州湾口到钱塘江出口,采用二维圣维南浅水波方程描述水波的运动,而在钱塘江河内采用一维圣维南浅水波方程描写涌潮的发展过程.详细描述用于一维和二维圣维南方程计算钱塘江涌潮的数值计算方法,首次把无结构网格上的NND格式应用于求解二维圣维南方程,并给出了详细的推导过程.对上下游水边界分别采用无反射边界条件和特征线方法,而对于动边界问题本文也给出了相应的处理方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号