首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the underresolved regime, mass conservation and energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high-order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L2-based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence-free H(div)-conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. This work raises the question whether and to which extent these two approaches are equivalent when applied to underresolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for underresolved simulations of turbulent flows due to their inherent dissipation mechanisms.  相似文献   

2.
The aim of the present study is to examine the accuracy and improvement of various numerical methods in the solution of the transonic shock/turbulent boundary layer interaction problem and to show that a significant source of numerical inaccuracies in turbulent flows is not only the inadequacy of the turbulence model but also the numerical discretization. Comparisons between a Riemann solver and a flux-vector-splitting method as well as between various numerical high-order extrapolation schemes with corresponding experimental results are presented.  相似文献   

3.
In this work we investigate the interplay of polynomial de-aliasing and sub-grid scale models for large eddy simulations based on discontinuous Galerkin discretizations. It is known that stability is a major concern when simulating underresolved turbulent flows with high order nodal collocation type discretizations. By changing the interpolatory character of the nodal collocation type discretization to a projection based discretization by increasing the number of quadrature points (polynomial de-aliasing), one is able to remove the aliasing induced stability problems. We focus on this effect and on the consequence for large eddy simulations with explicit subgrid scale models. Often, subgrid scale models have to achieve two possibly conflicting tasks in a single simulation: firstly stabilizing the numerics and secondly modeling the physical effect of the missing scales. Within a discontinuous Galerkin approach, it is possible to use either a fast (but potentially aliasing afflicted) nodal collocation discretization or a projection-based (but computationally costly) variant in combination with an explicit subgrid scale model. We use this framework to investigate the effect on the appropriate model parameter of a standard Smagorinsky subgrid scale model and of a Variational Multiscale Smagorinsky formulation. For this we first consider the 3-D viscous Taylor-Green vortex example to investigate the impact on the stability of the method and second the turbulent flow past a circular cylinder to investigate and compare the accuracy of the results. We show that the aliasing instabilities of collocative discretizations severely limit the choice of the model constant, in particular for high order schemes, while for de-aliased DG schemes, the closure model parameters can be chosen independently from the numerical scheme. For the cylinder flow, we also find that for the same model settings, the projection-based results are in better agreement with the reference DNS than those of the collocative scheme.  相似文献   

4.
非线性双曲型守恒律的高精度MmB差分格式   总被引:1,自引:0,他引:1  
构造了一维非线性双曲型守恒律方程的一个高精度、高分辨率的广义G odunov型差分格式。其构造思想是:首先将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各等分小区间交界面上的状态变量,并加以校正;其次,利用近似R iem ann解算子求解细小区间交界面上的数值通量,并结合高阶R unge-K u tta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的Mm B特性。然后,将格式推广到一、二维双曲型守恒方程组情形。最后给出了一、二维Eu ler方程组的几个典型的数值算例,验证了格式的高效性。  相似文献   

5.
A new compact third-order scheme for the solution of the unsteady Navier--Stokes equations on unstructured grids is proposed. The scheme is a cell-based algorithm, belonging to the class of Multidimensional Upwind schemes, which uses a finite-element reconstruction procedure over the cell to achieve third order (spatial) accuracy. Derivation of the scheme is given. The asymptotic accuracy, for steady/unsteady inviscid or viscous flow situations, is proved using numerical experiments. These results are compared with the performances of a second-order multidimensional upwind scheme. The new compact high-order discretization proves to have excellent parallel scalability, which makes it well suited for large-scale computations on parallel supercomputers. Our studies show clearly the advantages of the new compact third-order scheme compared with the classical second-order Multidimensional Upwind scheme. Received 29 October 2001 and accepted 21 March 2002  相似文献   

6.
一类高精度TVD差分格式及其应用   总被引:2,自引:0,他引:2  
构造了一维非线性双曲型守恒律的一个新的高精度、高分辨率的守恒型TvD差分格式。其构造思想是:首先,将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各细小区间交界面上的状态变量,并加以校正;其次,利用近似Riemann解计算细小区间交界面上的数值通量,并结合高阶Runge—Kutta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的TVD特性。该格式适合于使用分量形式计算而无须进行局部特征分解。通过计算几个典型的问题,验证了格式具有高精度、高分辨率且计算简单的优点。  相似文献   

7.
A high-order Lagrangian cell-centered conservative gas dynamics scheme is presented on unstructured meshes. A high-order piecewise pressure of the cell is intro- duced. With the high-order piecewise pressure of the cell, the high-order spatial discretiza- tion fluxes are constructed. The time discretization of the spatial fluxes is performed by means of the Taylor expansions of the spatial discretization fluxes. The vertex velocities are evaluated in a consistent manner due to an original solver located at the nodes by means of momentum conservation. Many numerical tests are presented to demonstrate the robustness and the accuracy of the scheme.  相似文献   

8.
王年华  李明  张来平 《力学学报》2018,50(3):527-537
非结构网格二阶有限体积离散方法广泛应用于计算流体力学工程实践中,研究非结构网格二阶精度有限体积离散方法的计算精度具有现实意义. 计算精度主要受到网格和计算方法的影响,本文从单元梯度重构方法、黏性通量中的界面梯度计算方法两个方面考察黏性流动模拟精度的影响因素. 首先从理论上分析了黏性通量离散中的“奇偶失联”问题,并通过基于标量扩散方程的制造解方法验证了“奇偶失联”导致的精度下降现象,进一步通过引入差分修正项消除了“奇偶失联”并提高了扩散方程计算精度;其次,在不同类型、不同质量的网格上进行基于扩散方程的制造解精度测试,考察单元梯度重构方法、界面梯度计算方法对扩散方程计算精度的影响,结果显示,单元梯度重构精度和界面梯度计算方法均对扩散方程计算精度起重要作用;最后对三个黏性流动算例(二维层流平板、二维湍流平板和二维翼型近尾迹流动)进行网格收敛性研究,初步验证了本文的结论,得到了计算精度和网格收敛性均较好的黏性通量计算格式.   相似文献   

9.
We present fully resolved computations of flow over periodic hills at the hill-Reynolds numbers \(\text {Re}_{H}=?5{,}600\) and \(\text {Re}_{H}=?10{,}595\) with the highest fidelity to date. The calculations are performed using spectral incompressible discontinuous Galerkin schemes of \(8^{\text {th}}\) and \(7^{\text {th}}\) order spatial accuracy, \(3^{\text {rd}}\) order temporal accuracy, as well as 34 and 180 million grid points, respectively. We show that the remaining discretization error is small by comparing the results to h- and p-coarsened simulations. We quantify the statistical averaging error of the reattachment length, as this quantity is widely used as an ‘error norm’ in comparing numerical schemes. The results exhibit good agreement with the experimental and numerical reference data, but the reattachment length at \(\text {Re}_{H}=?10{,}595\) is predicted slightly shorter than in the most widely used LES references. In the second part of this paper, we show the broad range of capabilities of the numerical method by assessing the scheme for underresolved simulations (implicit large-eddy simulation) of the higher Reynolds number in a detailed h/p convergence study.  相似文献   

10.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, the numerical dissipation properties of the Spectral Difference (SD) method are studied in the context of vortex dominated flows and wall-bounded turbulence, using uniform and distorted grids. First, the validity of using the SD numerical dissipation as the only source of subgrid dissipation (the so-called Implicit-LES approach) is assessed on regular grids using various polynomial degrees (namely, p = 3, p = 4, p = 5) for the Taylor-Green vortex flow configuration at R e = 5 000. It is shown that the levels of numerical dissipation greatly depend on the order of accuracy chosen and, in turn, lead to an incorrect estimation of the viscous dissipation levels. The influence of grid distortion on the numerical dissipation is then assessed in the context of finite Reynolds number freely-decaying and wall-bounded turbulence. Tests involving different amplitudes of distortion show that highly skewed grids lead to the presence of small-scale, noisy structures, emphasizing the need of explicit subgrid modeling or regularization procedures when considering coarse, high-order SD computations on unstructured grids. Under-resolved, high-order computations of the turbulent channel flow at R e τ = 1000 using highly-skewed grids are considered as well and present a qualitatively similar agreement to results obtained on a regular grid.  相似文献   

12.
A methodology to perform a ghost-cell-based immersed boundary method (GCIBM) is presented for simulating compressible turbulent flows around complex geometries. In this method, the boundary condition on the immersed boundary is enforced through the use of ‘ghost cells’ that are located inside the solid body. The computations of variables on these ghost cells are achieved using linear interpolation schemes. The validity and applicability of the proposed method is verified using a three-dimensional (3D) flow over a circular cylinder, and a large-eddy simulation of fully developed 3D turbulent flow in a channel with a wavy surface. The results agree well with the previous numerical and experimental results, given that the grid resolution is reasonably fine. To demonstrate the capability of the method for higher Mach numbers, supersonic turbulent flow over a circular cylinder is presented. While more work still needs to be done to demonstrate higher robustness and accuracy, the present work provides interesting insights using the GCIBM for the compressible flows.  相似文献   

13.
While methods for assessing the uncertainty of Reynolds–Averaged–Navier–Stokes (RANS) simulations have been well established in the past, the verification of Large Eddy Simulations (LES) is more difficult. One reason is that the numerical discretization error as well as the subgrid scale model contribution depend on the grid resolution and that both terms interact. In the present paper the accuracy of single-grid estimators to assess the amount of the unresolved turbulent kinetic energy is studied first. In the second part of the paper the sensitivity of the simulation results on the modeling error as well as the numerical error will be investigated in the context of LES with implicit filtering. This will be achieved by performing a systematic grid and model variation. The analysis is applied to an isothermal, turbulent, plane jet and a turbulent channel flow.  相似文献   

14.
Mouyon  Ph.  Imbert  N.  Montseny  G. 《Nonlinear dynamics》2002,29(1-4):23-35
Vehicles moving through the atmosphere or ocean are frequently subjectto distributed random excitations. This situation occurs for examplewhen turbulent boundary layers develop over their surfaces since thewall pressure fields are distributed random fields. It also occurs whenlarge-scale turbulent flows are encountered by the vehicles such asturbulent winds for an aircraft. These random fields may inducestructural vibrations, mechanical loads, fatigue and damage. They arefrequently described by spectral models (Corcos or Chase models forturbulent boundary layers, Dryden or Von Karman models for turbulentwinds) which involve nonrational terms.For such nonrational models, the development of a Markovian timesimulator relies on a rational approximation of the wavevector-frequencyspectrum obtained from an identification stage. This paper presents ageneral method to manage this stage, that provides us with a family ofstable rational approximations that converges towards the true model asthe dimension increases. These approximations are then used to simulatethe random field.We first give an exact but infinite dimensional state spacerepresentation of any nonrational distributed random field. It is basedon a diffusive formulation and the frequential decoupling property ofthe spatial Fourier transform. Then the discretization of this exactmodel leads to stable finite-dimensional approximations over aprescribed frequency range.The approach is applied to the simulation of a theoretical two-dimensional(2D) turbulent wind spectrum.  相似文献   

15.
We first review the state-of-the art in direct numerical simulation and present a new class of spectral methods on unstructured grids for handling complex-geometry domains. Subsequently, we concentrate on the classical problem of the turbulent wake behind a circular cylinder and compare the accuracy of spectral DNS versus other LES results available in the literature. We find that DNS provides consistent agreement with the experimental results, but that LES predictions are inconsistent and depend strongly on the interaction between numerical discretization and the subgrid model. We also demonstrate via a simple vorticity-based analysis of the turbulent near-wake that eddy-viscosity models are inappropriate for sudgrid modeling. In contrast, preliminary a priori tests suggest that scale-similarity models may be a good candidate. We close the paper by forecasting the use of dynamic DNS and comment on its role in simulating turbulence in complex geometries.  相似文献   

16.
In this note, basic turbulent statistics in a pipe flow are computed accurately by large-eddy simulation using a mesh resolution coarser than the viscous sublayer. These results are obtained when a regular Cartesian mesh is used for the spatial discretization of the circular pipe thanks to an immersed boundary method combined with high-order schemes. In this particular computational configuration, the near-wall features of mean velocity and Reynolds stress profiles are found to be correctly captured at a scale significantly smaller than the mesh size. Comparisons between channel and pipe flow configurations suggest that an irregular mesh distribution in terms of wall distance may be a favourable condition to explicitly compute by large-eddy simulation reliable wall turbulence without any extra-modelling in the near-wall region.  相似文献   

17.
We present an eigen‐decomposition of the quasi‐linear convective flux formulation of the completely coupled Reynolds‐averaged Navier–Stokes and turbulence model equations. Based on these results, we formulate different approximate Riemann solvers that can be used as numerical flux functions in a DG discretization. The effect of the different strategies on the solution accuracy is investigated with numerical examples. The actual computations are performed using a p‐multigrid algorithm. To this end, we formulate a framework with a backward‐Euler smoother in which the linear systems are solved with a general preconditioned Krylov method. We present matrix‐free implementations and memory‐lean line‐Jacobi preconditioners and compare the effects of some parameter choices. In particular, p‐multigrid is found to be less efficient than might be expected from recent findings by other authors. This might be due to the consideration of turbulent flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
胡迎港  蒋艳群  黄晓倩 《力学学报》2022,54(11):3203-3214
Hamilton-Jacobi (HJ) 方程是一类重要的非线性偏微分方程, 在物理学、流体力学、图像处理、微分几何、金融数学、最优化控制理论等方面有着广泛的应用. 由于HJ方程的弱解存在但不唯一, 且解的导数可能出现间断, 导致其数值求解具有一定的难度. 本文提出了非稳态HJ方程的7阶精度加权紧致非线性格式 (WCNS). 该格式结合了Hamilton函数的Lax-Friedrichs型通量分裂方法和一阶空间导数左、右极限值的高阶精度混合节点和半节点型中心差分格式. 基于7点全局模板和4个4点子模板推导了半节点函数值的高阶线性逼近和4个低阶线性逼近, 以及全局模板和子模板的光滑度量指标. 为避免间断附近数值解产生非物理振荡以及提高格式稳定性, 采用WENO型非线性插值方法计算半节点函数值. 时间离散采用3阶TVD型Runge-Kutta方法. 通过理论分析验证了WCNS格式对于光滑解具有最佳的7阶精度. 为方便比较, 经典的7阶WENO格式也被推广用于求解HJ方程. 数值结果表明, 本文提出的WCNS格式能够很好地模拟HJ方程的精确解, 且在光滑区域能够达到7阶精度; 与经典的同阶WENO格式相比, WCNS格式在精度、收敛性和分辨率方面更优, 计算效率略高.   相似文献   

19.
周帅  肖周芳  付琳  汪丁顺 《力学学报》2022,54(6):1732-1740
网格自适应技术和高阶精度数值方法是提升计算流体力学复杂问题适应能力的有效技术途径. 将这两项技术结合需要解决一系列技术难题, 其中之一是高阶精度流场插值. 针对高阶精度自适应流动计算, 提出一类高精度流场插值方法, 实现将前一迭代步网格中流场数值解插值到当前迭代步网格中, 以延续前一迭代步中的计算状态. 为实现流场插值过程中物理量守恒, 该方法先计算新旧网格的重叠区域, 然后将物理量从重叠区域的旧网格中转移到新网格中. 为满足高阶精度要求, 先采用k-exact最小二乘方法对旧网格上的数值解进行重构, 获得描述物理量分布的高阶多项式, 随后采用高阶精度高斯数值积分实现物理量精确地转移到新网格单元上. 最后, 通过一个具有精确解的数值算例和一个高阶精度自适应流动计算算例验证了本文算法的有效性. 第一个算例结果表明当网格规模固定不变时, 插值精度阶数越高, 插值误差越小; 第二个算例显示本文方法可以有效缩短高精度自适应流动计算的迭代收敛时间.   相似文献   

20.
基于非结构/混合网格的高阶精度格式研究进展   总被引:1,自引:0,他引:1  
尽管以二阶精度格式为基础的计算流体力学(CFD) 方法和软件已经在航空航天飞行器设计中发挥了重要的作用, 但是由于二阶精度格式的耗散和色散较大, 对于湍流、分离等多尺度流动现象的模拟, 现有成熟的CFD 软件仍难以给出满意的结果, 为此CFD 工作者发展了众多的高阶精度计算格式. 如果以适应的计算网格来分类, 一般可以分为基于结构网格的有限差分格式、基于非结构/混合网格的有限体积法和有限元方法,以及各种类型的混合方法. 由于非结构/混合网格具有良好的几何适应性, 基于非结构/混合网格的高阶精度格式近年来备受关注. 本文综述了近年来基于非结构/混合网格的高阶精度格式研究进展, 重点介绍了空间离散方法, 主要包括k-Exact 和ENO/WENO 等有限体积方法, 间断伽辽金(DG) 有限元方法, 有限谱体积(SV) 和有限谱差分(SD) 方法, 以及近来发展的各种DG/FV 混合算法和将各种方法统一在一个框架内的CPR (correctionprocedure via reconstruction) 方法等. 随后简要介绍了高阶精度格式应用于复杂外形流动数值模拟的一些需要关注的问题, 包括曲边界的处理方法、间断侦测和限制器、各种加速收敛技术等. 在综述过程中, 介绍了各种方法的优势与不足, 其间介绍了作者发展的基于"静动态混合重构" 的DG/FV 混合算法. 最后展望了基于非结构/混合网格的高阶精度格式的未来发展趋势及应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号