首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization.However,the laser diffraction and phase Doppler particle analyzers have difficulty in accurately characterizing sprays with a wide range of droplet sizes and very large droplets,especially if a large number of droplets are aspherical.A method to measure size in such largedroplet sprays based on digital imaging with backward illumination was developed,including an image acquisition system and image process programs.Calibration of the measurement system was performed using a dot calibration target with different dot sizes.An experimental setup was designed and established to characterize spray nozzles under different operation loads,as well as different nozzle arrangements.Results show that the droplet size of sprays ranges from dozens of microns to several millimeters.The superiority of wide load range for such nozzles was indicated by the size-measurement results under half-load to full-load operations.The present study revealed that the image processing technique can be effectively implemented for in-line size measurements of sprays with a wide distribution of droplet size and aspherical droplets,which would be difficult to characterize by other methods.  相似文献   

2.
Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization. However, the laser diffraction and phase Doppler particle analyzers have difficulty in accurately characterizing sprays with a wide range of droplet sizes and very large droplets, especially if a large number of droplets are aspherical. A method to measure size in such large-droplet sprays based on digital imaging with backward illumination was developed, including an image acquisition system and image process programs. Calibration of the measurement system was performed using a dot calibration target with different dot sizes. An experimental setup was designed and established to characterize spray nozzles under different operation loads, as well as different nozzle arrangements. Results show that the droplet size of sprays ranges from dozens of microns to several millimeters. The superiority of wide load range for such nozzles was indicated by the size-measurement results under half-load to full-load operations. The present study revealed that the image processing technique can be effectively implemented for in-line size measurements of sprays with a wide distribution of droplet size and aspherical droplets, which would be difficult to characterize by other methods.  相似文献   

3.
A twin-fluid nozzle was proposed for low-pressure atomization. The nozzle is featured by swirling air flows in the mixing chamber. Liquid medium is thereby inhaled due to the pressure difference. An experimental work was performed to investigate the atomization performance of the nozzle and the hydrogen peroxide solution served as the liquid medium. Droplet size and droplet velocity were measured. Effects of the diameter of the air-injection orifice and the air-injection pressure were investigated. The results show that small droplet size is achieved with the proposed nozzle. As the spray develops, Sauter mean diameter (SMD) of the droplets decreases first and then increases, irrespective of the variation of the air-injection orifice diameter and the air-injection pressure. Overall SMD varies inversely with the air-injection orifice diameter and air-injection pressure. Near the nozzle, cross-sectional velocity distribution exhibits a peak-valley pattern, which is replaced with uniformized velocity distributions away from the nozzle. Similarity of cross-sectional radial velocity distribution at different air pressures is evidenced. Furthermore, the correlation between droplet size and droplet velocity is established.  相似文献   

4.
The aim of this experimental work was to demonstrate the ability of three-color laser-induced fluorescence (3cLIF) thermometry to study the thermal mixing of two non-isothermal water sprays. Combined 3cLIF-phase Doppler analyzer measurements were also implemented to derive correlations between droplet size and temperature. Both sprays had different characteristics in terms of flow rate and droplet size distribution. The liquid spray was successively pre-heated, and the other spray was maintained and injected at ambient temperature. The thermal mixing will be discussed in light of a wide set of experimental results obtained under various experimental conditions, including different liquid flow rates, droplet size distributions and droplet concentrations. To analyze the potential effect of droplet coalescence on the mean local liquid temperature, both sprays were alternatively seeded with fluorescent dye. Main results show that significant heating of cold spray is possible when the hot spray is injected with the higher flow rate. Moreover, this heating affects only the smallest droplets.  相似文献   

5.
This paper presents a detailed numerical analysis of diesel engine spray structure induced by the Engine Combustion Network (ECN) Spray A at different injection pressures. The non-reacting simulations are performed using OpenFOAM where an Eulerian–Lagrangian model is adopted in the large eddy simulation (LES) framework. Effects of the LES mesh resolution as well as the spray model parameters are investigated with the focus on their impact on spray structure as the injection pressure varies. The predicted liquid and vapour penetration lengths agree well with the measurements at different injection pressures. The mixture fraction is well captured for the injection pressure of 100 and 150 MPa while a slight deviation from the measurements is observed for the injection pressure of 50 MPa near the nozzle. The parametric analysis confirms that the LES mesh resolution has significant effects on the results. A coarser mesh leads to higher liquid and vapour penetration lengths where the deviation from the measurements is larger, resulting in the highest error at the lowest injection pressure. As the mesh size increases, the droplet size distribution becomes narrower, its pick moves to the smaller droplet size and the probability of droplets with higher temperature increases. On the other hand, with increasing the mesh size, the carrier gas velocity decays slower and its radial dispersion decreases. It is found that the droplet characteristics are more affected by the mesh resolution when the injection pressure is the lowest while the opposite is true for the carrier phase. The number of Lagrangian particles also affects the droplet characteristics and the fuel-air mixing but their effects are not as significant as the mesh size. The results become less sensitive to the number of Lagrangian particles as the pressure injection decreases. Finally, the importance of the initial droplet size distribution is investigated, confirming its impact is marginal, particularly on the liquid length. It is observed that the initial droplet size is only important at very close to the nozzle and its impact on the spray structure becomes quickly insignificant due to the high rates of breakup and evaporation. This trend is consistent at different injection pressures.  相似文献   

6.
The main objective of this paper is to develop a technique to measure the global droplet properties in the atomisation region of a water jet issuing in a high-speed air cross-flow. Knowledge of these global properties allows comparison of the break-up outcome of geometrically different water nozzles. This is achieved by extending a PDA system to enable measurements in three-dimensional droplet flows. First, the droplet size and the spatial droplet distribution are measured by the PDA method. The global droplet properties are then obtained by using the measured local mass flux as a weighting factor in integrating the local droplet size. To facilitate the measurement of mass flux in three-dimensional flows, the PDA method is extended so that the reference area for the mass flux is derived as a function of both the geometry of the measurement volume and the flow direction. In the present application of three-dimensional droplet flow (a water jet in air cross-flow), a simple method is developed to measure the three velocity components of droplets by means of a two-component PDA system. The paper outlines the measurement technique and the procedure of estimating the global droplet size and the global droplet size spectra from local droplet properties and local mass flux. Received: 26 July 1998/Accepted: 23 February 1999  相似文献   

7.
A population balance system that models the synthesis of urea is studied in this paper. The equations for the flow field, the mass and the energy balances are given in a three‐dimensional domain, while the equation for the particle size distribution is given in a four‐dimensional domain. This problem is convection‐dominated and aggregation‐driven. Both features require the application of appropriate numerical methods. This paper presents a numerical approach for simulating the population balance system, which is based on finite element schemes, a finite difference method and a modern method to evaluate convolutIon integrals that appear in the aggregation term. Two experiments are considered and the numerical results are compared with experimental data. Unknown parameters in the aggregation kernel have to be calibrated. For appropriately chosen parameters, good agreements are achieved of the experimental data and the numerical results computed with the proposed method. A detailed study of the computational results reveals the influence of different parts of the aggregation kernel. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The droplet sizes and electrical charges under different applied electrical voltages are experimentally measured for a liquid-liquid electrostatic spray system. Considering droplet size and charge distributions, the two-dimensional motion for a group of charged droplets in a liquid-liquid electrostatic atomization system is simulated. From measured droplet size and charge distributions, the simulation can obtain the velocities and positions in a two-dimensional domain for all simulated droplets at different times. The various forces acting on droplet as well as their effects on droplet velocity and trajectory are analyzed and the liquid-liquid electrostatic atomization characteristics are revealed. In addition, for one-dimensional motion trajectory of larger droplet, the comparison between simulation and experiment is also conducted and a general agreement can be obtained.  相似文献   

9.
A theoretical model is developed in the present study to simulate droplet motion and the evolution of droplet size distribution (DSD) in two-phase air/dispersed water spray flows. The model takes into account several processes which influence DSD and droplet trajectory: droplet collision and coalescence, evaporation and cooling, gravitational settling, and turbulent dispersion of dispersed phase. The DSDs determined by the model at different locations in a two-phase flow are evaluated by comparing them to experimental observations obtained in an icing wind tunnel. The satisfactory coincidence between simulation and experimental results proves that the model is reliable when modeling two-phase flows under icing conditions. The model is applied for two particular examples in which the modification of DSD is calculated in two-phase flows under conditions describing in-cloud icing and freezing drizzle.  相似文献   

10.
The present work comparably examines four different twin-fluid atomizers operated under the same operating conditions. Spray formation was examined by several approaches. The internal flow pattern was estimated using a simplified analytical approach, and the results were supported by the observation of the liquid discharge in the near-nozzle region. A high-speed back illumination was used for visualisation of the primary breakup. In the region of fully developed spray, the dynamics of droplets was studied using a phase-Doppler analyser (PDA). The information obtained from all methods was then correlated. Results show that the spray formation process depends mainly on the internal design of twin-fluid atomizer at low gas to liquid ratios (GLR). The amount of gas influences the character of the internal two-phase flow, a mechanism of the liquid breakup, droplet dynamics and a resulting drop size distribution. Differences among the atomizers are reduced with the increase in GLR. Moreover, it was shown that a certain mixing process can inherently create the annular internal flow which generates a stable spray characterized by relatively low mean droplet size.  相似文献   

11.
This paper addresses the use of different slotted pores in rotating membrane emulsification technology. Pores of square and rectangular shapes were studied to understand the effect of aspect ratio (1-3.5) and their orientation on oil droplet formation. Increasing the membrane rotation speed decreased the droplet size, and the oil droplets produced were more uniform using slotted pores as compared to circular geometry. At a given rotation speed, the droplet size was mainly determined by the pore size and the fluid velocity of oil through the pore (pore fluid velocity). The ratio of droplet diameter to the equivalent diameter of the slotted pore increased with the pore fluid velocity. At a given pore fluid velocity and rotation speed, pore orientation significantly influences the droplet formation rate: horizontally disposed pores (with their longer side perpendicular to the membrane axis) generate droplets at double the rate of vertically disposed pores. This work indicates practical benefits in the use of slotted membranes over conventional methods.  相似文献   

12.
This paper addresses the use of different slotted pores in rotating membrane emulsification technology.Pores of square and rectangular shapes were studied to understand the effect of aspect ratio (1-3.5) and their orientation on oil droplet formation.Increasing the membrane rotation speed decreased the droplet size,and the oil droplets produced were more uniform using slotted pores as compared to circular geometry.At a given rotation speed,the droplet size was mainly determined by the pore size and the fluid velocity of oil through the pore (pore fluid velocity).The ratio of droplet diameter to the equivalent diameter of the slotted pore increased with the pore fluid velocity.At a given pore fluid velocity and rotation speed,pore orientation significantly influences the droplet formation rate: horizontally disposed pores (with their longer side perpendicular to the membrane axis) generate droplets at double the rate of vertically disposed pores.This work indicates practical benefits in the use of slotted membranes over conventional methods.  相似文献   

13.
Experimental measurements and numerical simulations of a high-speed water spray are presented. The numerical model is based on a stochastic separated flow technique that includes submodels for droplet dynamics, heat and mass transfer, and droplet–droplet collisions. Because the spray characteristics near the nozzle are difficult to ascertain, a new method for initialization of particle diameter size is developed that assumes a Rosin–Rammler distribution for droplet size, which correctly reproduces experimentally measured Sauter and arithmetic mean diameters. By relating the particle initialization to lower moments of the droplet statistics, it is possible to take advantage of measurements without substantial penalties associated with the greater experimental uncertainty of individual droplet measurements. Overall, very good agreement is observed in the comparisons of experimental measurements to computational predictions for the streamwise development of mean drop size and velocity. In addition, the importance of modeling droplet–droplet collisions is highlighted with comparison of selected droplet–droplet collision models.  相似文献   

14.
A Hamiltonian framework of non-equilibrium thermodynamics is adopted to construct a set of dynamical continuum equations for a polymer blend with matrix viscoelasticity and a narrow droplet size distribution that is assumed to obey a Weibull distribution function. The microstructure of the matrix is described in terms of a conformation tensor. The variable droplet distribution is described in terms of two thermodynamic variables: the droplet shape tensor and the number density of representative droplets. A Hamiltonian functional in terms of the thermodynamic variables is introduced and a set of time evolution equations for the system variables is derived. Sample calculations for homogenous flows and constant droplet distribution are compared with data of a PIB/PDMS blend and a HPC/PDMS blend with high viscoelastic contrast. For the PIB/PDMS blend, satisfactory predictions of the flow curves are obtained. Sample calculations for a blend with variable droplet distribution are performed and the effect of flow on the rheology, droplet morphology, and on the droplet distribution are discussed. It is found that deformation can increase or decrease the dispersity of the droplet morphology for the flows investigated herein.  相似文献   

15.
When laser-induced fluorescence of droplets is used for measurements such as droplet temperature, a new dependence of the droplet size on the spectral distribution of fluorescence has been highlighted. The two-color laser-induced fluorescence technique applied to droplet temperature measurement requires a single fluorescent tracer and two spectral bands of detection for which the temperature sensitivity is different. Generally, the ratio of the intensities measured on each of the spectral bands of detection is assumed to be only temperature dependent. However, droplet dependence on diameter is also likely to influence the intensities ratio. This study provides some illustrations of the phenomenon, first on sprays with different mean statistical diameters and secondly on single droplets, for two temperature-sensitive fluorescent tracers in their solvents: sulforhodamine B dissolved in water and pyrromethene 597-8C9 dissolved in n-decane.  相似文献   

16.
In this contribution, the spatial particle distribution in sprays of different atomizers is analyzed. Steady and unsteady particle structures are identified by evaluating the interparticle arrival time statistics at a certain position, which is the time increment between two succeeding particles. In addition to its characteristics of size and velocity, each particle exhibits an individual interparticle arrival time that is used to identify unsteady characteristics in the flow. Unsteadiness in sprays is thereby of interest for several reasons and in several applications, for example, in the combustion industry. A typical example of an unsteady spray behaviour is droplet clustering which can be caused, for example, by pulsating liquid disintegration procedures or particle interaction with large-scale eddy structures in the gas. The aim of the investigation is the analysis of such unsteady spray conditions. The evaluation of spray unsteadiness is done by means of point wise and time resolved PDA measurements in the spray of a pressure and twin-fluid atomizer, respectively.  相似文献   

17.
刘赵淼  刘丽昆  申峰 《力学学报》2014,46(2):209-216
利用显微粒子图像测速技术、高速度数码显微系统及数值模拟方法研究了Y 型微通道内液滴的形成. 主要考虑了Y 型角度(45°,90°,135°,180°)、两相流量大小等因素的影响. 发现在挤压机制中,Y 型微通道内分散相液滴的形成主要受到来自连续相的剪切作用,Y 型角度越小,分散相所受到的剪切作用越大. 在液滴生成过程中,连续相速度剖面呈非对称抛物线型分布. 当Y 型角度小于180°时,角度的变化对液滴直径大小影响较小,但角度的减小会加快液滴的生成时间. 当Y 型角度为180°时,生成的液滴体积最大且生成时间最长. 毛细数对液滴直径和生成时间的变化同时产生影响,连续相毛细数的增大使得连续相在两相交汇位置处对分散相的作用力更集中,导致分散相更易破裂.   相似文献   

18.
阎凯  宁智  吕明  孙春华  付娟  李元绪 《力学学报》2016,48(3):566-575
压力旋流喷嘴被广泛应用于航空发动机、船用发动机、车用汽油缸内直喷发动机、燃气轮机等动力机械的燃油喷射系统中.以压力旋流喷嘴射流为研究对象,开展了圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布相关性问题研究.对于液体射流,以往的研究往往对破碎液滴粒径数量密度分布或速度数量密度分布进行单独研究,对于这两种数量密度分布之间关系的研究较少;从相关性的角度对圆环旋转黏性液体射流破碎液滴粒径与速度数量密度分布之间的关系进行研究.采用最大熵原理方法建立了圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数.对圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数进行了讨论,对圆环旋转黏性液体射流破碎液滴粒径数量密度分布与速度数量密度分布的相关性问题进行了研究.研究结果表明,为了给出正确的圆环旋转黏性液体射流破碎液滴粒径与速度联合概率密度函数,射流守恒约束条件中必须同时包括质量守恒定律、动量守恒定律以及能量守恒定律;破碎液滴粒径的数量密度分布与速度数量密度分布密切相关;射流旋转强度对破碎液滴粒径数量密度与速度数量密度分布结构影响不大,对破碎液滴粒径数量密度和速度数量密度的分布区域影响较大.   相似文献   

19.
20.
利用显微粒子图像测速技术、高速度数码显微系统及数值模拟方法研究了Y 型微通道内液滴的形成. 主要考虑了Y 型角度(45°,90°,135°,180°)、两相流量大小等因素的影响. 发现在挤压机制中,Y 型微通道内分散相液滴的形成主要受到来自连续相的剪切作用,Y 型角度越小,分散相所受到的剪切作用越大. 在液滴生成过程中,连续相速度剖面呈非对称抛物线型分布. 当Y 型角度小于180°时,角度的变化对液滴直径大小影响较小,但角度的减小会加快液滴的生成时间. 当Y 型角度为180°时,生成的液滴体积最大且生成时间最长. 毛细数对液滴直径和生成时间的变化同时产生影响,连续相毛细数的增大使得连续相在两相交汇位置处对分散相的作用力更集中,导致分散相更易破裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号