首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
In the underwater-shock environment,cavitation occurs near the structural surface.The dynamic response of fluid-structure interactions is influenced seriously by the cavitation effects.It is also the difficulty in the field of underwater explosion.With the traditional boundary element method and the finite element method(FEM),it is difficult to solve the nonlinear problem with cavitation effects subjected to the underwater explosion.To solve this problem,under the consideration of the cavitation effects and fluid compressibility,with fluid viscidity being neglected,a 3D numerical model of transient nonlinear fluid-structure interaction subjected to the underwater explosion is built.The fluid spectral element method(SEM) and the FEM are adopted to solve this model.After comparison with the FEM,it is shown that the SEM is more precise than the FEM,and the SEM results are in good coincidence with benchmark results and experiment results.Based on this,combined with ABAQUS,the transient fluid-structure interaction mechanism of the 3D submerged spherical shell and ship stiffened plates subjected to the underwater explosion is discussed,and the cavitation region and its influence on the structural dynamic responses are presented.The paper aims at providing references for relevant research on transient fluid-structure interaction of ship structures subjected to the underwater explosion.  相似文献   

2.
This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support. The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration. The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method. The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter,nonlinear spring stiffness. Based on this, the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness. The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.  相似文献   

3.
An analytical model is developed to assess the elastic-plastic dynamic response of fully backed sandwich plates under localized impulse load.The core is modeled as an elastic-perfectly plastic foundation.The top face sheet is treated as an individual plate resting on the foundation.The elastic-plastic analysis for the top face sheet is based on a minimum principle in dynamic plasticity associated with the finite difference technique.The effects of spatial and temporal distributions of the impulsive loading on the dynamic response of sandwich plates are discussed.The model can be used to predict the impulse-induced local effect on fully backed sandwich plates.  相似文献   

4.
The dynamic properties of soil under impact loads are studied experimentally and numerically. By analyzing the microstructural photos of soils with and without impact, it is shown that impact loads can destroy the original structures in the compact area, where the soil grains are rearranged regularly and form the compact whirlpool structure. Simultaneously, the dynamic impact process of soil is simulated by using the software of Ls-dyna. The time-dependent distribution of the dynamic stress and density is obtained in the soil. Furthermore, the simulation results are consistent with the experimental results. The reinforcement mechanism and the rule of dynamic compaction of soils due to impact load are also elucidated.  相似文献   

5.
Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state,and the flow is frequently unsteady and turbulent.To assess the state-of-the-art of computational capabilities for unsteady cavitating flows,different cavitation and turbulence model combinations are conducted.The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics.The kε turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively.We have also blended these alternative cavitation and turbulence treatments,to illustrate that the eddy viscosity near the closure region can significantly influence the capture of detached cavity.From the experimental validations regarding the force analysis,frequency,and the cavity visualization,no single model combination performs best in all aspects.Furthermore,the implications of parameters contained in different cavitation models are investigated.The phase change process is more pronounced around the detached cavity,which is better illus-trated by the interfacial dynamics model.Our study provides insight to aid further modeling development.  相似文献   

6.
A mixture theory is developed for multi-component micropolar porous media with a combination of the hybrid mixture theory and the micropolar continuum theory. The system is modeled as multi-component micropolar elastic solids saturated with multi- component micropolar viscous fluids. Balance equations are given through the mixture theory. Constitutive equations are developed based on the second law of thermodynamics and constitutive assumptions. Taking account of compressibility of solid phases, the volume fraction of fluid as an independent state variable is introduced in the free energy function, and the dynamic compatibility condition is obtained to restrict the change of pressure difference on the solid-fluid interface. The constructed constitutive equations are used to close the field equations. The linear field equations are obtained using a linearization procedure, and the micropolar thermo-hydro-mechanical component transport model is established. This model can be applied to practical problems, such as contaminant, drug, and pesticide transport. When the proposed model is supposed to be porous media, and both fluid and solid are single-component, it will almost agree with Eringen's model.  相似文献   

7.
A two-degrees-of-freedom vibratory system with a clearance or gap is under consideration based on the Poincard map. Stability and local bifurcation of the period-one doubleimpact symmetrical motion of the system are analyzed by using the equation of map. The routes from periodic impact motions to chaos, via pitchfork bifurcation, period-doubling bifurcation and grazing bifurcation, are studied by numerical simulation. Under suitable system parameter conditions, Neimark-Sacker bifurcations associated with periodic impact motion can occur in the two-degrees-of-freedom vibro-impact system.  相似文献   

8.
The torsional impact response of a penny-shaped crack in a nonhomogeneous strip is considered. The shear modulus is assumed to be functionally graded such that the mathematics is tractable. Laplace and Hankel transforms were used to reduce the problem to solving a Fredholm integral equation. The crack tip stress field is obtained by considering the asymptotic behavior of Bessel function. Explicit expressions of both the dynamic stress intensity factor and the energy density factor were derived. And it is shown that, as crack driving force, they are equivalent for the present crack problem. Investigated are the effects of material nonhomogeneity and strip‘s highness on the dynamic fracture behavior.Numerical results reveal that the peak of the dynamic stress intensity factor can be suppressed by increasing the nonhomogeneity parameter of the shear modulus, and that the dynamic behavior varies little with the adjusting of the strip‘ s highness.  相似文献   

9.
Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application. Two categories of the tension-dominant and curvature-dominant nonlinearities are analyzed. The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach. The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity, its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects. However, for the nanomechanical resonator of the curvature-dominant nonlinearity, its dynamic nonlinearity is only dependent on axial loading. Compared with the tension-dominant nonlinearity, the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity can result in both hardening and softening effects. The analysis on the dynamic nonlinearity can be very helpful to the tuning application of the nanomechanical resonator.  相似文献   

10.
The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid numerical instability issues associated with artificial added mass effects, which are often encountered by standard loosely coupled (LC) and tightly coupled (TC) algorithms, when modeling the FSI response of flexible structures in incompressible flow. The artificial added mass effect is caused by the lag in exchange of interfacial displacements and forces between the fluid and solid solvers in partitioned algorithms. The artificial added mass effect is much more prominent for light/flexible structures moving in water, because the fluid forces are in the same order of magnitude as the solid forces, and because the speed at which numerical errors propagate in an incompressible fluid. The new HC algorithm avoids numerical instability issues associated with artificial added mass effects by embedding Theodorsen’s analytical approximation of the hydroelastic forces in the solution process to obtain better initial estimates of the displacements. Details of the new HC algorithm are presented. Numerical validation studies are shown for the forced pitching response of a steel and a plastic hydrofoil. The results show that the HC algorithm is able to converge faster, and is able to avoid numerical instability issues, compared to standard LC and TC algorithms, when modeling the transient FSI response of a plastic hydrofoil. Although the HC algorithm is only demonstrated for a NACA0009 hydrofoil subject to pure pitching motion, the method can be easily extended to model general 3-D FSI response and stability of complex, flexible structures in turbulent, incompressible, multiphase flows.  相似文献   

11.
12.
一种修正的低温流体空化流动计算模型   总被引:1,自引:0,他引:1  
时素果  王国玉 《力学学报》2012,44(2):269-277
为了更准确地预测低温流体的空化流动特性, 基于Kubota空化模型, 对蒸发和凝结源项进行修正, 建立了一种考虑热力学效应的空化模型. 分别采用原始和修正的Kubota空化模型, 计算了绕对称回转体液氮的空化流动, 通过与实验结果的比较对修正的空化模型进行了评价. 结果表明, 与原Kubota空化模型比较, 修正的空化模型由于考虑了热力学效应, 计算获得的蒸发量减小, 凝结量增大, 空穴长度减小, 空穴界面形态呈模糊状态.计算结果与实验结果更加一致, 说明修正的空化模型能准确的描述低温流体空化过程的质量传输过程, 能够更准确模拟低温流体中的空化流动特性.  相似文献   

13.
冲蚀磨损与冲蚀、空蚀交互磨损的对比研究   总被引:1,自引:0,他引:1  
基于计算流体力学(computational fluid dynamics,CFD)方法,数值对比研究了在模拟水轮机工况中不同转速时,冲蚀与冲蚀、空蚀交互作用时,转盘表面的流场(压力场、流体浓度分布),然后在转盘式磨损装置上,进行了汽液固三相冲蚀与空蚀交互磨损试验.结果表明:对于冲蚀磨损来说,随着转速增加,压力增大,在冲蚀作用下加入空蚀磨损,压力增高,磨损加剧;而对于交互磨损来说,随着转速增加,转盘表面的空蚀磨损区域从空化孔附近开始沿着转盘旋转的反方向偏移,并且磨损程度加剧;数值计算的气泡较多且压力梯度较高区域和试验转盘磨损区域基本一致,数值计算结果和试验结果吻合得较好.  相似文献   

14.
基于自主设计的可视化试验装置及膜温和膜厚测量方法,对下游泵送螺旋槽密封空化特征及性能参数进行试验研究.探讨了油压和转速对不同螺旋槽密封液膜中空穴发生位置、空穴分布及空穴边界的影响,拟合了不同螺旋槽密封空穴边界的试验关系式,并对不同空化模型的理论泄漏量和膜厚与相应试验值进行了对比分析.结果表明:内槽型和中槽型密封的空穴均发生在螺旋槽内,但两者的空穴区形状明显不同;油压的增加有助于抑制液膜中空穴的发生,而转速的增加反之;尤其是内槽型,油压对其空穴发生影响更为显著;在低转速或高油压时,Reynolds和JFO两空化模型均可用于预测泄漏量和膜厚;在高转速或低油压时,JFO空化模型预测值更准确,而Reynolds空化模型预测值偏大.  相似文献   

15.
用计算流体力学方法,数值模拟水润滑轴承空化-冲蚀交互作用时气液固三相流场的动力学特性(压力场、速度场、气含率分布),然后在水润滑轴承摩擦磨损装置上,进行试件磨损试验,并观察试件表面形貌.结果表明:考虑空化影响后,水润滑轴承整个流场压力分布更接近实际;数值模拟所得的流场压力、速度、气含率最大值,均出现在发生空化的位置附近,其余位置基本不变,说明交互磨损比单一磨损严重.观察试件表面磨痕,存在短程犁沟、空蚀针孔、麻点状气蚀坑和蚀坑,磨痕呈现规律性,磨痕与轴转速的方向基本一致.试验结果和数值计算吻合较好,证明了理论分析的正确与合理.上述仿真与试验初步探讨了水润滑轴承空化与冲蚀交互作用的磨损机理与影响因素.  相似文献   

16.
To better understand the multiphase fluid dynamics and associated transport processes of cavitating flows at the capillary number of 0.74 and 0.54, and to validate the numerical results, a combined computational and experimental investigation of flows around a hydrofoil is studied based on flow visualizations and time-resolved interface movement. The computational model is based on a modified RNG k-ε model as turbulence closure, along with a vapor-liquid mass transfer model for treating the cavitation process. Overall, favorable agreement between the numerical and experimental results is observed. It is shown that the cavi- tation structure depends on the interaction of the water-vapor mixture and the vapor among the whole cavitation stage, the interface between the vapor and the two-phase mixture exhibits substantial unsteadiness. And, the adverse motion of the interface relates to pressure and velocity fluctuations inside the cavity. In particular, the velocity in the vapor region is lower than that in the two-phase region.  相似文献   

17.
水下爆炸过程中存在着大量的空化现象,空化的产生、演化及其溃灭过程对于水下冲击波传播、爆炸气泡运动以及水下结构物冲击损伤都会产生重要影响。本文基于多相可压缩流体理论模型,考虑空化发生过程中汽-液两相流体亚平衡状态下两相之间发生的热力学-化学平衡机制,分析汽-液两相介质之间的质量和热量交换,从而实现对相变过程的自动捕捉。该系统的控制方程采用分步法处理,首先利用二阶MUSCL-Hancock格式和HLLC黎曼求解器来求解齐次双曲型方程,再采用牛顿迭代法求解相变方程。数值测试结果表明,本文的计算模型对于空化相变过程具有较好的捕捉能力。最后将该模型应用到水下近水面爆炸空化的数值模拟当中,研究发现空泡的溃灭压力峰值约为冲击波压力峰值的15%,有效作用时间是冲击波载荷有效作用时间的2倍以上。本文的空化相变模型能够为水下爆炸空化现象的机理研究提供重要支撑。  相似文献   

18.
The study of cavitation dynamics in cryogenic environment has critical implications for the performance and safety of liquid rocket engines, but there is no established method to estimate cavitation‐induced loads. To help develop such a computational capability, we employ a multiple‐surrogate model‐based approach to aid in the model validation and calibration process of a transport‐based, homogeneous cryogenic cavitation model. We assess the role of empirical parameters in the cavitation model and uncertainties in material properties via global sensitivity analysis coupled with multiple surrogates including polynomial response surface, radial basis neural network, kriging, and a predicted residual sum of squares‐based weighted average surrogate model. The global sensitivity analysis results indicate that the performance of cavitation model is more sensitive to the changes in model parameters than to uncertainties in material properties. Although the impact of uncertainty in temperature‐dependent vapor pressure on the predictions seems significant, uncertainty in latent heat influences only temperature field. The influence of wall heat transfer on pressure load is insignificant. We find that slower onset of vapor condensation leads to deviation of the predictions from the experiments. The recalibrated model parameters rectify the importance of evaporation source terms, resulting in significant improvements in pressure predictions. The model parameters need to be adjusted for different fluids, but for a given fluid, they help capture the essential fluid physics with different geometry and operating conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
空化作为一种重要的复杂水动力学现象,具有明显的三维流动特征与剧烈的非定常特性,在水力机械、船舶推进器、水利工程中广泛存在,且通常会带来不利的影响,长期以来一直是水动力学领域研究的重点与难点课题之一.本文首先从实验测量和数值模拟两个角度,综述了空化水动力学非定常特性研究的发展概况, 分析了当前存在的问题.在空化实验研究中,主要介绍了空化水洞、空化流场测量以及多物理场同步测量等方面所取得的进展.在数值模拟方法中, 对目前的空化模型和湍流模型进行了分类介绍,并重点讨论了大涡模拟、验证和确认等在空化流模拟中的应用.之后以附着型空化为主, 同时兼顾云状空泡、空蚀、涡空化等,梳理了其研究中存在的几个关键科学问题,包括空化演变、空化流动的三维结构、失稳机制、空化不稳定性及其与低频压力脉动的联系、空化与旋涡的相互作用、空化与弹性水翼的流固耦合、空化对尾流场影响等.最后展望了空化水动力学的研究方向和未来发展趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号