首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为了安全回收煤气余热,实验研究了不同初始温度下的一氧化碳和空气混合气体在设置障碍物的管道中的爆燃特性。测量了爆燃压力和火焰速度,分析了化学当量比和温度对爆燃的影响。结果表明:爆燃压力和火焰速度在障碍物段快速提高;一氧化碳当量比为1.1时爆燃的强度最大;初始温度升高后,压力提高逐渐减缓,最大火焰速度下降,但仍大于550m/s,传播时间先快速增加后平稳。 更多还原  相似文献   

2.
研究了障碍物阻塞率、障碍物间距、障碍物空间位置对丙烷-空气爆炸过程及火焰加速效应的影响。采用雷诺平均(RANS)方程和湍流火焰封闭燃烧模型计算非稳态燃烧过程,主要分析障碍物周围复杂流场特性以及湍流涡与火焰面作用的详细机理。结果表明:阻塞率在0.5~0.7时,障碍物间距对火焰加速效果的影响较大,其中障碍物间距为一倍管径时火焰加速效应最大;而障碍物的空间位置对火焰传播的影响更为显著,当障碍物位于管道单侧时,湍流涡强度最大,火焰褶皱最明显,火焰传播速度最快。  相似文献   

3.
以甲烷为代表性气体,研究了半封闭管道中设置多孔障碍物对可燃气体爆炸火焰传播的影响,基于大涡模拟对实验进行了重现,对比了实验与模拟中火焰传播过程的形状、位置及速度,分析了模拟结果中火焰穿过障碍物前后的流场和表面积变化,给出了衡量火焰褶皱程度的指标及算法。结果表明:大涡模拟结果与实验结果有较好的一致性;火焰在存在障碍物的管道内传播,经历层流快速膨胀、受阻回流、湍流快速发展和脉动减速4个阶段,各阶段火焰依次分别呈现加速、减速、二次加速、二次减速的波动变化;当可燃气体在开口与点火位置同端的管道内爆炸,火焰在接近障碍物时,受管道封闭端和障碍物约束显著,而出现脉动回流现象;火焰穿过多孔障碍物后,传播速度骤升至峰值,较未穿过障碍物前的最大速度可增加58.7%;障碍物是导致火焰面破碎以及面积褶皱率增大的直接原因,火焰褶皱率最大可达44.8%,比未穿过障碍物前的最大褶皱率增大39.27%。  相似文献   

4.
丙烷-空气爆燃波的火焰面在直管道中的加速运动   总被引:17,自引:2,他引:15  
对丙烷 空气爆燃波的火焰面 (以下简称爆燃火焰 )在直管道中加速运动的规律及其影响因素作了初步实验研究 ,包括爆燃火焰在光滑内壁管道中的传播状况 ;管道直径和点火能量的变化以及当管道内有障碍物时对火焰加速度的影响。以上研究也涉及了非稳定爆轰波的火焰面在直管道中的加速运动。根据这一研究结果 ,对目前按常规设计和使用的工业管道阻火器的安全性和可靠性提出了质疑。  相似文献   

5.
障碍物在预混气体火焰传播过程中对其结构及传播特性造成较大影响,对火焰的加速和爆燃转爆轰过程(deflagration-to-detonation transition, DDT)起到直接的促进作用。通过障碍物条件下可视管道中甲烷/空气预混火焰传播实验,捕获其火焰微观结构变化。采用三维物理模型,采用壁面自适应局部涡黏模型(wall-adapting local eddy-viscosity, WALE)的大涡模拟(large eddy simulation, LES),并用火焰增厚化学反应模型(thickened flame model, TFM)对实验过程进行重现。分析开口管道中预混火焰翻越障碍物后的复杂流场变化,并分析层流向湍流转变过程的特点。揭示了在障碍物影响下预混火焰扰动失稳现象的直接原因,是由障碍物引发的3个气流涡团同时作用而形成Kelvin-Helmholtz不稳定及Rayleigh-Taylor不稳定现象耦合作用所导致。  相似文献   

6.
方形管内楔形障碍物对火焰结构与传播的影响   总被引:1,自引:0,他引:1  
通过实验与数值模拟方法对CH4/空气预混火焰在有楔形障碍物的卧式燃烧方管内的传播进行了研究。采用多镜头Cranz Schardin高速摄像机和压力传感器等实验设备获得了高清晰度的障碍物诱导火焰失稳的分幅时序照片以及障碍物背风表面压力变化曲线。数值模拟则基于RANS方法与EDU-Arrhenius燃烧模型,计算结果与实验结果基本相符,反映了火焰在管内传播与变形的详细过程。通过综合分析实验与计算结果,得到了由楔形障碍物导致的火焰加速与变形的内在机理,揭示了火焰传播过程中由层流燃烧向湍流燃烧转捩的本质。  相似文献   

7.
针对石化装置罐区大口径、长距离管道内火焰传播缺乏系统研究的问题,设计搭建了DN50~DN500工业尺度管道火焰传播实验装置,并开展了丙烷/空气、乙烯/空气等可燃气体在不同管径下的实验研究。实验结果表明:可燃气体积分数对火焰传播及爆轰有一定影响,当接近化学计量浓度时,爆轰加速距离更短,更易形成稳态爆轰,而当可燃气混合气为贫燃或富燃状况时,爆轰加速距离则会增长;火焰爆轰传播速度、爆轰压力与管道管径基本无关,受可燃气种类影响更大;对应体积分数为6.6%的乙烯/空气和体积分数为4.2%的丙烷/空气混合气体,爆轰压力分别是初始压力的15.17和14.47倍,DN150以下管径内的爆轰压力远高于ISO16852标准给出的参考值。罐区连通管道阻火器选型安装时,应结合安装位置选用合适的阻火器。  相似文献   

8.
张延炜  徐景德  胡洋  田思雨  冯若尘  秦汉圣 《爆炸与冲击》2021,41(5):055402-1-055402-9
为研究柔性障碍物对甲烷空气爆炸波的激励效应,采用双向拉伸聚丙烯(biaxially oriented polypropylene, BOPP)薄膜作为柔性障碍物将管道内甲烷空气预混气体与空气隔开,对比障碍物前后火焰、激波变化,分析膜状柔性障碍物激励效应的机理。实验结果表明:这种具有一定承压能力的柔性障碍物对甲烷爆炸波产生的激励效应不可忽视,在膜片破裂前产生多次激波反射过程,可诱导湍流火焰形成,促使膜前爆炸压力提高,膜片破裂后,火焰在伴流作用下传播速度突增,并加速逐渐逼近前驱冲击波,致使膜后爆炸压力大幅提高;激励效应可使膜片前后最大爆炸压力相差5倍,火焰速度相差7倍;另外在膜片位置2.5 m后增设一道膜片,可增强这种激励效应,而增加膜片的实质是使激波火焰相互作用的次数增加。  相似文献   

9.
为揭示置障管道内甲烷/空气预混火焰传播特性,运用高速摄影技术对甲烷/空气预混火焰的形状变化和火焰前锋的速度特性进行实验,并利用大涡模拟对管道内的流场结构进行数值分析。结果表明:置障管道内依次出现了球形火焰、指尖形火焰及“蘑菇”状火焰,且“蘑菇”状火焰出现之后,火焰开始反向传播;“蘑菇”状火焰是双涡旋结构与火焰前锋面相互作用的结果,而火焰的反向传播是由流场中出现逆流结构引起的;障碍物对火焰前锋有明显的加速作用;大涡模拟成功再现了实验中观察到的火焰形状、火焰前锋速度及流场结构,说明大涡模拟适用于置障管道内预混火焰传播特性的研究。  相似文献   

10.
通过自主搭建的小尺寸实验平台,研究管道内障碍物阻塞率及形状对当量比为1时甲烷/氢气爆炸特性的影响。研究结果表明:相同工况下火焰传播结构基本相似,预混火焰传播路径随障碍物阻塞率增大而变窄;预混火焰传播速度随着障碍物阻塞率与氢气体积分数的增大而上升,也随着障碍物形状的改变而产生变化;最大爆炸超压随着障碍物阻塞率和氢气体积分数的增大而增大,达到最大爆炸超压的时间随着阻塞率的增大而缩短;混合气体在管道内爆炸特性受障碍物与混合气体中氢气体积分数共同影响,氢气体积分数小于50%时,受障碍物与混合气体共同影响,氢气体积分数大于50%时,主要受混合气体燃烧特性影响。此研究能够为甲烷/氢气的安全利用提供理论基础。  相似文献   

11.
通过对实验室中几何尺寸为80×80mm钢制管道内部加装高度分别为4mm、8mm、12mm、16mm的四种螺旋环,模拟巷道支护结构对瓦斯爆炸火焰传播速度的影响。采用高精度动态数据采集分析系统,测量爆炸过程中的火焰传播速度,研究了不同高度的螺旋环对火焰传播速度的影响。结果表明:在螺旋环其他条件相同的情况下,管内瓦斯爆炸火焰传播速度随螺旋环高度、圈数增加而增加。并从理论上进行了分析,其主要原因为螺旋环高度越大、圈数越多,产生湍流度的程度亦愈大,对瓦斯爆炸火焰加速亦愈明显。试验结果对巷道支护的选择有指导意义。  相似文献   

12.
障碍物对铝粉火焰加速作用的实验研究   总被引:12,自引:2,他引:12  
在沿火焰传播的通道上重复设置障碍物对粉尘火焰有明显加速作用,这种加速作用的机理可归功于障碍物诱导的湍流区对燃烧过程的正反馈。在封闭容器中,铝粉-空气混合物燃烧达到的最大压力p_(max)与障碍物的存在关系不大,而最大压力上升率(dp/dt)_(max)与障碍物的存在有关。因为p_(max)取决于容器内的总能量,(dp/dt)_(max)则取决于燃烧过程,即能量释放率。  相似文献   

13.
在低浓度煤层气含氧液化工艺过程中,甲烷浓度会处于爆炸极限范围内,存在爆炸危险。采用流场模拟平台,对密闭容器内低温环境条件下的甲烷爆炸过程进行了数值模拟。通过研究得出:在反应体系体积及初始环境压力不变的情况下,环境温度越低,最大爆炸压力越大,到达最大爆炸压力所需时间越长;爆炸流场以化学反应区为阵面分别建立正负流动区,并不断向壁面推进,火焰传播过程受化学反应区正反馈机制的影响,在密闭容器内出现点火、加速传播、衰减传播和猝灭4个阶段;随着环境温度的降低,火焰传播速度明显降低,火焰持续时间延长。该结论可为认清低温条件下的甲烷爆炸机理及预防低浓度煤层气含氧液化工艺爆炸事故提供依据。  相似文献   

14.
通过揭示当量比对氢气云爆炸火焰形态、火焰半径和爆炸超压峰值的影响规律,本文拟建立耦合火焰自加速传播的氢气云爆炸超压预测模型。结果表明:氢气云爆炸火焰传播速度由大至小对应的当量比依次是Φ=2.0、Φ=1.0和Φ=0.8。Le<1.0和Le>1.0的氢气云爆炸火焰表面均出现胞格结构,胞格结构的出现必然会增加火焰燃烧表面积,进而出现“火焰自加速”现象。对于特定的当量比,随着压力监测点和点火位置间距的增加,爆炸超压峰值的正值和负值绝对值均单调减小;对于特定的压力监测点,爆炸超压峰值的正值和负值绝对值随当量比的关系存在些许差异;不同当量比和监测点位置的爆炸超压峰值的负值绝对值大都高于正值。耦合火焰自加速传播的氢气云爆炸超压预测模型可成功预测不同压力监测点薄膜破裂前氢气云爆炸超压的发展过程。  相似文献   

15.
在长12 m的无缝不锈钢直管中,通过改变初始点火能量,探究了点火能对封闭管道内丙烷-空气混合气体爆炸传播特性和激波对管壁动态加载的影响。结果表明,初始点火能对预混气体爆炸火焰传播规律以及管壁的动态响应有显著影响:点火能越大,爆炸越剧烈,爆炸压力峰值压力和管壁最大应变就越大,且压力波和管壁应变的发展一致。火焰在传播过程中受到管道末端反射波的作用会发生短暂熄灭和复燃;管壁承受冲击波加载,应变信号主要分布在0~781.25 Hz,管壁最大应变率大于10-3 s-1,实验工况下管壁应变属动态响应。  相似文献   

16.
构建了长径比为4的含弱约束端面的短管道实验系统,对短管道油气爆炸特性进行了实验研究,得到油气爆炸压力和火焰的变化规律。实验结果表明:(1)受破膜、泄流、外部爆炸等因素的影响,含弱约束端面短管道油气爆炸具有多个超压峰值,并产生Helmholtz振荡;(2)弱约束端面对管道内外爆炸超压均具有增强作用,内部最大超压为24.23 kPa,外部最大超压为5.45 kPa,分别为无约束条件下的4.9和2.7倍;(3)火焰变化过程可划分为“层流燃烧-突变加速-外部爆炸-衰弱熄灭”4个阶段;由于湍流、界面不稳定、斜压效应等因素的影响,火焰在突变加速和外部爆炸两个阶段会发生剧烈的拉伸褶皱和卷曲变形,形成Tulip火焰和蘑菇云状火焰。(4)在层流燃烧阶段,弱约束端面对火焰速度有减弱作用,此阶段最大火焰速度为3.5 m/s,相比于无约束时减弱了41.3%;而在突变加速和外部爆炸阶段,弱约束端面破坏产生的强泄流对火焰传播速度有增强作用,此阶段最大火焰速度为80.2 m/s,相比于无约束时增强了106.2%。(5)不同初始油气浓度条件下火焰发展模式具有显著差异,在低浓度和中浓度条件下火焰能够冲出弱约束端面形成外部火球,而在高浓度条件下,火焰无法冲出管道。  相似文献   

17.
阻火器是一种应用广泛的爆炸阻隔装置。为了深入理解影响阻火器性能的因素,通过实验方法探究了不同初始压力下可爆预混气体通过波纹板阻火器的淬熄特性。结果表明,可燃气的活性、体积分数和初始压力均会影响火焰速度稳定性、传播模式以及淬熄难度。实验发现火焰传播具有3种模式:直接淬熄、穿过阻火单元后逐渐淬熄、淬熄失败。可淬熄的最大初始压力plim用以表征火焰淬熄难度,虽然其最小值位于化学计量比,但仍在一定体积分数范围内保持恒定。此外,基于传热作用得到密闭管道中丙烷-空气预混气爆燃阻火速度公式,并进行了实验验证。  相似文献   

18.
To study the effect of inert dust on gas explosion suppression mechanism, SiO2 fine powders were sprayed to suppress premixed CH4-Air gas explosion in a 20 L spherical experimental system. In the experiment, high speed schlieren image system was adopted to record explosion flame propagation behaviors, meanwhile, pressure transducers and ion current probes were used to clearly record the explosion flame dynamic characteristics. The experimental results show that the SiO2 fine powders suppressed evidently the gas explosion flame, and reduced the peak value of pressure and flame speed by more than 40 %. The ion current result shows that the SiO2 super fine powders were easy to contact with and absorb free radicals near the combustion reaction region, which greatly reduced the combustion reaction intensity, and in turn influenced the flame propagation and pressure rising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号