首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The bulge test is a particularly convenient testing method for characterizing elastomers under biaxial loading. In addition, it is convenient to utilize this test for validating material models in simulation due to the heterogeneous strain field induced during inflation. During the bulge test the strain field for elastomers covers uniaxial tension at the border to pure shear and equibiaxial tension at the pole. Elastomeric materials exhibit a hyperelastic material behavior, with a dependency on temperature and loading rate. The temperature effect on the mechanical behavior during biaxial loading is considered in the present study. A bulge test setup combined with a temperature chamber is developed in order to characterize this effect, and an exemplary temperature dependent characterization of a poly(norbornene) elastomer is performed with this setup. The equibiaxial stress–strain curves measured at 60 °C, 20 °C and −20 °C are presented.  相似文献   

2.
Tensile tests with simultaneous full-field strain and temperature measurements at the nominal strain rates of 0.01, 0.1, 1, 200 and 3000 s?1 are presented. Three different testing methods with specimens of the same thin and flat gage-section geometry are utilized. The full-field deformation is measured on one side of the specimen, using the DIC technique with low and high speed visible cameras, and the full-field temperature is measured on the opposite side using an IR camera. Austenitic stainless steel is used as the test material. The results show that a similar deformation pattern evolves at all strain rates with an initial uniform deformation up to the strain of 0.25–0.35, followed by necking with localized deformation with a maximum strain of 0.7–0.95. The strain rate in the necking regions can exceed three times the nominal strain rate. The duration of the tests vary from 57 s at the lowest strain rate to 197 μs at the highest strain rate. The results show temperature rise at all strain rates. The temperature rise increases with strain rate as the test duration shortens and there is less time for the heat to dissipate. At a strain rate of 0.01 s?1 the temperature rise is small (up to 48 °C) but noticeable. At a strain rate of 0.1 the temperature rises up to 140 °C and at a strain rate of 1 s?1 up to 260 °C. The temperature increase in the tests at strain rates of 200 s?1 and 3000 s?1 is nearly the same with the maximum temperature reaching 375 °C.  相似文献   

3.
A computationally economic finite-element-based multi-linear elastic orthotropic materials approach has been developed to predict the stress–strain and fracture behaviour of ceramic matrix composites with strain-induced damage. The finite element analysis utilises a solid element to represent a homogenised orthotropic medium of a heterogeneous uni-directional tow. The non-linear multi-axial stress–strain behaviour has been discretised to multi-linear elastic curves, which have been implemented by a user defined subroutine or UMAT in the commercial finite element package, ABAQUS. The model has been used to study the performance of two CMC composites: a SiC (Nicalon) fibre/calcium aluminosilicate (CAS) matrix 0°/90° cross-ply laminate Nicalon/CAS; and, a carbon fibre/carbon matrix–SiC matrix (C/C–SiC) plain weave laminate DLR-XT. The global stress–strain curves with catastrophic fracture behaviour and effects of fibre waviness have been predicted. Comparisons have been made between the predictions and experimental data for both materials. The predicted results when fibre waviness is taken into account compare well with the experimental data.  相似文献   

4.
This paper is concerned with the standard uncertainty of the true stress–true strain curve as the tensile properties of auto-body steel sheets at intermediate strain rates ranged from 1 to 100 s?1. A procedure to obtain true stress–true strain data is properly designed for the experiment and data acquisition. An analytic model is then established to evaluate the standard uncertainty of the measurand. The measurand in this case is the true stress which is a function of the input quantities: the tensile load; the initial length, the thickness and the width of a specimen; and the deformed length of a specimen. Sources of uncertainties of the input quantities are evaluated for the high speed tensile test with their associated sensitivity coefficients. Uncertainty of the stress data acquired is also considered in the procedure of the fast Fourier transform (FFT) smoothing process used to remove unnecessary signals acquired from experiments. Image analysis using a high speed camera is carried out to measure deformation of the specimen during high speed tensile tests with proper uncertainty evaluation. A combined standard uncertainty is evaluated from the uncertainties of the input quantities as well as the influence factor for the true stress of auto-body steel sheets at intermediate strain rates. Consequently, the true stress–true strain data are obtained with proper standard uncertainty evaluation.  相似文献   

5.
The shear fracture of dual-phase steel   总被引:1,自引:0,他引:1  
Unexpected fractures at high-curvature die radii in sheet forming operations limit the adoption of advanced high strength steels (AHSS) that otherwise offer remarkable combinations of high strength and tensile ductility. Identified as “shear fractures” or “shear failures,” these often show little sign of through-thickness localization and are not predicted by standard industrial simulations and forming limit diagrams. To understand the origins of shear failure and improve its prediction, a new displacement-controlled draw-bending test was developed, carried out, and simulated using a coupled thermo-mechanical finite element model. The model incorporates 3D solid elements and a novel constitutive law taking into account the effects of strain, strain rate, and temperature on flow stress. The simulation results were compared with companion draw-bend tests for three grades of dual-phase (DP) steel over a range of process conditions. Shear failures were accurately predicted without resorting to damage mechanics, but less satisfactorily for DP 980 steel. Deformation-induced heating has a dominant effect on the occurrence of shear failure in these alloys because of the large energy dissipated and the sensitivity of strain hardening to temperature increases of the order of 75 °C. Isothermal simulations greatly overestimated the formability and the critical bending ratio for shear failures, thus accounting for the dominant effect leading to the inability of current industrial methods to predict forming performance accurately. Use of shell elements (similar to industrial practice) contributes to the prediction error, and fracture (as opposed to strain localization) contributes for higher-strength alloys, particularly for transverse direction tests. The results illustrate the pitfall of using low-rate, isothermal, small-curvature forming limit measurements and simulations to predict the failure of high-rate, quasi-adiabatic, large-curvature industrial forming operations of AHSS.  相似文献   

6.
Fatigue of the Near-Alpha Ti-Alloy Ti6242   总被引:1,自引:0,他引:1  
Ti6242 is the workhorse of high-temperature Ti-alloys in the high pressure compressor of aero engines. In this study the influence on isothermal fatigue of different load controls, i.e. stress, total strain and plastic strain control at different temperatures and environments was investigated. The alloy had a bi-modal microstructure (some 30 vol.% primary alpha), which yields a good balance between fatigue and creep properties. In addition thermomechanical fatigue (TMF) tests were also performed. Modelling lifetime on the basis of a Basquin–Coffin–Manson relationship revealed only marginal scattering in the temperature range between 350°C and 650°C. Increasing the temperature led to a decrease in lifetime. This can be attributed to increased oxidation and creep. The latter one is clearly seen in isothermal tests under stress control. Tests in vacuum resulted in longer lifetimes. In-phase TMF tests exhibited a longer lifetime than out-of-phase tests, with a factor of about 4. Lifetime and stress response of in-phase tests are similar to the corresponding lifetime of an isothermal test at the maximum temperature. This similarity can be considered as a starting point for modelling TMF behaviour on the basis of isothermal fatigue.  相似文献   

7.
To provide test facilities for determining the tension and short-time creep properties of small-diameter tungsten wire at high temperatures, special equipment has been designed and built, employing rf (radio frequency) heating as the means of attaining temperatures up to 2600° C. This paper describes the problems which had to be solved in designing and building the equipment, and gives results to tests made after the equipment was assembled. The equipment had to meet these requirements: it had to be capable of providing tension and short-time creep data on tungsten wire in sizes from 0.001 in. diam to 0.009 in. at temperatures up to 2600° C, it had to provide an autographic stress-strain curve for the tension tests, the loading rate during tension tests had to be constant, and all of this had to be done in good vacuum. Basically the equipment consists of a loading frame which supports a calibrated beam-type load dynamometer, a synchronous electric-clock motor for applying the load, rf equipment for attaining the desired temperature, an X-Y recorder for recording stress-strain curves, and a two-color automatic optical pyrometer for measuring the temperature. The test arrangement is mounted on a vacuum base plate under a bell jar. For creep testing, the flexible beam is replaced by a rigid beam, and load is applied by means of dead weights. Creep strain is measured with a cathetometer or Optron.  相似文献   

8.
The capability for high temperature nanoindentation measurements to 950 °C in high vacuum has been demonstrated on polycrystalline tungsten, a material of great importance for nuclear fusion and spallation applications and as a potential high temperature nanomechanics reference sample. It was possible to produce measurements with minimal thermal drift (typically ~0.05 nm/s at 750–950 °C) and no visible oxidative damage. The temperature dependence of the hardness, elastic modulus, plasticity index, creep, creep strain, and creep recovery were investigated over the temperature range, testing at 25, 750, 800, 850, 900 and 950 °C. The nanoindentation hardness measurements were found to be consistent with previous determinations by hot microhardness. Above 800 °C the hardness changes relatively little but more pronounced time-dependent deformation and plasticity were observed from 850 °C. Plasticity index, indentation creep and creep recovery all increase with temperature. The importance of increased time-dependent deformation and pile-up on the accuracy of the elastic modulus measurements are discussed. Elastic modulus measurements determined from elastic analysis of the unloading curves at 750–800 °C are close to literature bulk values (to within ~11 %). The high temperature modulus measurements deviate more from bulk values determined taking account of the high temperature properties of the indenter material at the point (850 °C) at which more significant time-dependent deformation is observed. This is thought to be due to the dual influence of increased time-dependency and pile-up that are not being accounted for in the elastic unloading analysis. Accounting for this time-dependency by applying a viscoelastic compliance correction developed by G. Feng and A.H.W. Ngan (J. Mater. Res. (2002) 17:660–668) greatly reduces the values of the elastic modulus, so they are agree to within 6 % of literature values at 950 °C.  相似文献   

9.
The mechanical properties of Ni-base alloys have drawn considerable attention owing to their wide application in the hot components of aircrafts and gas turbines. To accurately measure the deformation of Ni-based alloys at high temperatures, a new type of high-temperature speckles is fabricated on the surface of specimens subjected to long heating durations at temperatures up to 1400 °C. Meanwhile, a novel measurement method based on the scale-invariant feature transform algorithm is developed to measure the deformation and obtain a more accurate result. Both of the above proposed methods are used in a creep test of Inconel 713C at 860 °C. The experimental results indicate that the speckles exhibit excellent performance under heating conditions and adhere well to the substrate at high temperatures. Also, the proposed deformation measurement method exhibits superior image processing even when the speckle quality is imperfect with respect to speckle size.  相似文献   

10.
In this investigation, the three-parameter Modified Mohr–Coulomb (MMC) fracture model and the determination of the material parameters are briefly described. The formulation of the post-initiation behavior is proposed by defining both the explicit softening law and the incremental damage evolution law. As opposed to the existing attempts to simulate slant fracture with material weakening before crack formation, softening is assumed to occur only in the post-initiation range. The justification of this assumption can be provided by the interrupted fracture tests, for example, Spencer et al. (2002).Element deletion with a gradual loss of strength is used to simulate crack propagation after fracture initiation. The main emphasis of the paper is the numerical prediction of slant fracture which is almost always observed in thin sheets. For that purpose, VUMAT subroutines of ABAQUS are coded with post-initiation behavior for both shell elements and plane strain elements. Fracture of flat-grooved tensile specimens cut from advanced high strength steel (AHSS) sheets are simulated by 2D plane strain element and shell element models.  相似文献   

11.
In Part 2 of this study, extensive deformation tests were carried out on the nickel-base polycrystalline superalloy IN738LC under isothermal and anisothermal conditions between 450 and 950 °C. Under the isothermal conditions, the material showed almost no rate/time-dependency below 700 °C, while it showed distinct rate/time-dependency above 800 °C. Regarding the cyclic deformation, slight cyclic hardening behavior was observed when the temperature was below 700 °C and the imposed strain rate was fast, whereas in the case of the temperature above 800 °C or under slower strain rate conditions, the cyclic hardening behavior was scarcely observed. Unique inelastic behavior was observed under in-phase and out-of-phase anisothermal conditions: with an increase in the number of cycles, the stress at higher temperatures became smaller and the stress at lower temperatures became larger in absolute value although the stress range was approximately constant during the cyclic loading. In other words, the mean stress continues to evolve cycle-by-cycle in the direction of the stress at lower temperatures. Based on the experimental results, it was assumed that evolution of the variable Y that had been incorporated into a kinematic hardening rule in Part 1 of this study is active under higher temperatures and is negligible under lower temperatures. The material constants used in the constitutive equations were determined with the isothermal data, and were expressed as functions of temperature empirically. The extended viscoplastic constitutive equations were applied to the anisothermal cyclic loading as well as the monotonic tension, stress relaxation, creep and cyclic loading under the isothermal conditions. It was demonstrated that the present viscoplastic constitutive model was successful in describing the inelastic behavior of the material adequately, including the anomalous inelastic behavior observed under the anisothermal conditions, owing to the consideration of the variable Y.  相似文献   

12.
The temperature influence on the mechanical behaviour during plastic deformation of an AA5754-O aluminium alloy has been investigated by several experimental tests. First, monotonous tensile tests were carried out from room temperature up to 200°C with a classical tensile machine and with a less conventional testing apparatus involving the heating of the sample by Joule effect. With this second testing apparatus, the strain fields and tensile curves were obtained in function of temperature by means of a non-contacting optical 3D deformation measuring system. Moreover, shear tests were performed in the same temperature range. It is shown that the anisotropy coefficients are rather constant within this temperature range, with a relative variation less than 8%. For both tensile and shear tests, the stress levels are similar at the beginning of straining at room temperature and 150°C, except that the Portevin?CLe Chatelier (PLC) phenomenon disappears at elevated temperature, and then evolves differently. At 200°C, the stress level is clearly below whatever the deformation. In the framework of drawing process, the formability of this alloy at temperatures higher than 150°C seems to be improved.  相似文献   

13.
In this work, modeling of the stress–strain behavior is carried out using a simple dislocation model. This model uses three variables to characterize the dislocation population: The average forest and mobile dislocation densities, ρf and ρm, and the average dislocation mean free path L. However, it is shown that within reasonable assumptions, only two of these variables are independent. The mathematical form derived from this dislocation-based model was applied to experimental stress–strain data determined at room temperature for pure aluminum, 3003-O, 2008-T4, 6022-T4, 5182-O and 5032-T4 aluminum alloy sheets. The evolution of the state variables was calculated for these materials from a single stress–strain curve. The average dislocation mean free paths at a strain of 0.5 were compared with TEM observations of dislocation cell sizes or inter-dislocation spacing for specimens deformed equal biaxially with the hydraulic bulge test. A very good agreement was obtained between predictions and experiments.  相似文献   

14.
Previous investigations on the effects of strain-rate and temperature histories on the mechanical behavior of steel are briefly reviewed. A study is presented on the influence of strain rate and strain-rate history on the shear behavior of a mild steel, over a wide range of temperature Experiments were performed on thin-walled tubular specimens of short gage length, using a torsional split-Hopkinson-bar apparatus adapted to permit quasi-static as well as dynamic straining at different temperatures. The constant-rate behavior was first measured at nominal strain rates of 10?3 and 103 s?1 for ?150, ?100, ?50, 20, 200 and 400°C. Tests were then carried out, at the same temperatures, in which the strain rate was suddenly increased during deformation from the lower to the higher rate at various large values of plastic strain. The increase in rate occurred in a time of the order of 20 μs so that relatively little change of strain took place during the jump. The low strain-rate results show a well-defined elastic limit but no yield drop, a small yield plateau is found at room temperature. The subsequent strain hardening shows a maximum at 200°C, when serrated flow occurs and the ductility is reduced. The high strain-rate results show a considerable drop of stress at yield. The post-yield flow stress decreases steadily with increasing temperature, throughout the temperature range investigated. At room temperature and below, the strain-hardening rate becomes negative at large strains. The adiabatic temperature rise in the dynamic tests was computed on the assumption that the plastic work is entirely converted to heat. This enabled the isothermal dynamic stress-strain curves to be calculated, and showed that considerable thermal softening took place. The initial response to a strain-rate jump is approximately elastic, and has a magnitude which increases with decrease of testing temperature; it is little affected by the amount of prestrain. At 200 and 400° C, a yield drop occurs after the initial stress increment. The post-jump flow stress is always greater than that for the same strain in a constant-rate dynamic test, the strain-hardening rate becoming negative at large strains or low testing temperature. This observed effect of strain-rate history cannot be explained by the thermal softening accompanying dynamic deformation. These and other results concerning total ductility under various strain-rate and temperature conditions show that strain-rate history strongly affects the mechanical behavior of the mild steel tested and, hence, should be taken into account in the formulation of constitutive equations for that material.  相似文献   

15.
A physically based modelling and experimental investigation of the work hardening behaviour of IF steel covering a wide range of strain rates including complex strain path and/or strain rate changes are presented. In order to obtain isothermal stress–strain curves at high strain rates, a procedure has been proposed with the aid of finite element analysis. The result reveals that the apparent excess of the flow stress after a jump in strain rate, which is frequently observed in bcc metals, is in fact due to the thermal softening at large strains, and that the flow stress after a jump in strain rate tends asymptotically to the values corresponding to the curve at the new strain rate. The strain rate affects not only the short-range stress but also the long-range stress via the strain-rate dependant evolution of dislocation structures. The proposed model is based on the dislocation model of intragranular hardening proposed by Teodosiu and Hu [Teodosiu, C., Hu, Z., 1995. Evolution of the intragranular microstructure at moderate and large strains: modelling and computational significance. In: Shen, S., Dawson, P. R., (Eds.), Proceedings of Numiform'95 on Simulation of Materials Processing: Theory, Methods and Applications. Balkema, Rotterdam, pp. 173–182] and extended to strain rate sensitive one with applying the results of the thermal activation analysis. A satisfactory agreement has been achieved between model predictions and experimental results.  相似文献   

16.
High-speed experiments were conducted to characterize the deformation and failure of Styrene Butadiene Rubber at impact rates. Dynamic tensile stress–strain curves of uniaxial strip specimens and force–extension curves of thin sheets were obtained from a Charpy tensile impact apparatus. Results from the uniaxial tension tests indicated that although the rubber became stiffer with increasing strain rates, the stress–strain curves remained virtually the same above 280 s−1. Above this critical strain rate, strength, fracture strain and toughness decreased with increasing strain rates. When strain rates were below 180 s−1, the initial modulus, tensile strength and breaking extension increased as the strain rate increased. Between strain rates of 180 and 280 s−1, the initial modulus and tensile strength increased with increasing strain rates but the extension at break decreased with increasing strain rates. A hyper-viscoelastic constitutive relation of integral form was used to describe the rate-dependent material behavior of the rubber. Two characteristic relaxation times, 5 ms and 0.25 ms, were needed to fit the proposed constitutive equation to the data. The proposed constitutive equation was implemented in ABAQUS Explicit via a user-defined subroutine and used to predict the dynamic response of the rubber sheets in the experiments. Numerical predictions for the transient deformation and failure of the rubber sheet were within 10% of experimental results.  相似文献   

17.
The melt rheology of a commercially available tetrafluoroethylene/hexafluoropropylene copolymer, which is known as Teflon FEP copolymer, was studied to examine the effect of pre-thermal history during sample preparation conditions on dynamic shear and uniaxial elongational measurements. The first experimental series includes the sample preparation under hot press at 320 °C followed by a rapid cooling. The master curves were successfully obtained at 300 °C from the time-temperature superposition principle. The loss modulus G″ was found to be proportional to the angular frequency in a double-logarithmic plot toward 0.01 (rad/s), while the slope of the storage modulus G′ did not become 2. The elongational viscosity as a function of time under constant strain rates showed weak strain-hardening, which was enhanced with larger strain rates. The second experimental series contain three kinds of samples with different pre-thermal history to control rheological properties. All samples were hot-pressed at 320 °C followed by a rapid cooling to room temperature for the sample A and a slow cooling for the sample B and C. The dynamic shear and elongational measurements were performed at 270 °C for all samples, which were heated from room temperature for the sample A and B, but heated up to 280 °C and cooled down to 270 °C for the sample C. The distance between G″ and G′ become narrower in the order of the sample C, B, and A. In the same order, unexpectedly, the strain-hardening in the elongational viscosity measurements became the strain-softening. These unusual properties were discussed from a residual crystallinity.  相似文献   

18.
Fiber push-in nanoindentation is conducted on a unidirectional carbon fiber reinforced bismaleimide resin composite (IM7/BMI) after thermal oxidation to determine the interfacial shear strength. A unidirectional IM7/BMI laminated plate is isothermally oxidized under various conditions: in air for 2 months at 195 °C and 245 °C, and immersed in water for 2 years at room temperature to reach a moisture-saturated state. The water-immersed specimens are subsequently placed in a preheated environment at 260 °C to receive sudden heating, or are gradually heated at a rate of approximately 6 °C/min. A flat punch tip of 3 μm in diameter is used to push the fiber into the matrix while the resulting load-displacement data is recorded. From the load-displacement data, the interfacial shear strength is determined using a shear-lag model, which is verified by finite element method simulations. It is found that thermal oxidation at 245 °C in air leads to a significant reduction in interfacial shear strength of the IM7/BMI unidirectional composite, while thermal oxidation at 195 °C and moisture concentration have a negligible effect on the interfacial shear strength. For moisture-saturated specimens under a slow heating rate, there is no detectable reduction in the interfacial shear strength. In contrast, the moisture-saturated specimens under sudden heating show a significant reduction in interfacial shear strength. Scanning electron micrographs of IM7/BMI composite reveal that both thermal oxidation at 245 °C in air and sudden heating induced microcracks and debonding along the fiber/matrix interface, thereby weakening the interface, which is the origin of failure mechanism.  相似文献   

19.
Similar to the theory of endochronic plasticity, modified by Valanis in 1980, a simple endochronic transient creep model of metals is proposed by using a definition of intrinsic time ζ, measured within the creep strain tensor space, whose metric tensor is treated as a simple power form of creep strain-rate sensitive material function. The resulting constitutive equation of creep (Endocreep) contains only three material constants whose values can be determined completely by a simple creep test. An incremental form involving isothermally constant creep stress, with or without jump, and constant stress with temperature jump, are then formulated.In the applications of Endocreep on 304SS under variable temperature creep, data of simple creep tests, provided by Ohashi et al. at 650°C, Ohno et al. at 600°C, Findley and Cho at 593°C–649°C, are employed to determine material constants. The computational results in the simulation of creep tests under step-up and step-down temperature with constant axial stress are found in very good agreement with data provided by Findley and Cho. However, the results reveal that the model is too simple to deal with the recovery response of unloading. Beside this deficiency the model and its computational method proposed have a potential in the future FEM creep analysis of general thermomechanical loading history.  相似文献   

20.
An integrated experimental and modeling/simulation approach was developed to investigate and secure a quantified knowledge of the impact of high temperature exposures on the stability of residual stresses in a laser shock peened (LSP) high temperature aero-engine alloy, IN718 SPF (super-plastically formed). Single dimple LSP and overlap LSP treatments were carried out utilizing a Nd:Glass laser (λ?=?1.052 μm), and subsequent heat treatments on the LSP-treated coupons were conducted at different temperatures between 550 and 700 °C. A 3-D nonlinear finite element (FE) computational model and the rate-dependent Johnson-Cook material model were calibrated using the experimental results of residual stress from the single dimple LSP and thermal relaxation treatments, and were further extended to the overlap LSP treatment case. Both experimental and FE simulations show that: a) a high level of compressive residual stress (~700 MPa at surface) and residual stress depth (~0.4–0.6 mm) were achieved following LSP, and b) the overlap LSP treatment gave higher residual stress and greater depth. The magnitudes of the initial residual stress (and plastic strain), heating temperature and exposure time were identified as the key parameters controlling the thermal relaxation behavior. The stress relaxation mainly occurs initially before 20 min exposure and the extent of relaxation increases with an increase in temperature and a higher magnitude of the initial as-peened residual stress. In addition, in regions deeper than ~300 μm or after initial thermal exposure where the residual stress was lower than ~300 MPa, stress relaxation was found to be negligible. Kinetic analysis of the experimental thermal relaxation data based on Zener-Wert-Avrami model gave an activation enthalpy of 2.87 to 3.77 eV, which is near that reported in the literatures for volume and/or substitutional solute diffusion in Nickel. These results suggest that thermal relaxation of the LSP-induced residual stress occurs by a creep-like mechanism involving recovery, rearrangement and annihilation of dislocations by climb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号