首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
This paper deals with nonlinear free vibration of reticulated shallow spherical shells taking into account the effect of transverse shear deformation. The shell is formed by beam members placed in two orthogonal directions. The nondimensional fundamental governing equations in terms of the deflection, rotational angle, and force function are presented, and the solution for the nonlinear free frequency is derived by using the asymptotic iteration method. The asymptotic solution can be used readily to perform the parameter analysis of such space structures with numerous geometrical and material parameters. Numerical examples are given to illustrate the characteristic amplitude-frequency relation and softening and hardening nonlinear behaviors as well as the effect of transverse shear on the linear and nonlinear frequencies of reticulated shells and plates.  相似文献   

2.
3.
The direct approach of Reissner and of Simmonds and Danielson is used to derive polynomial approximations to the strain-displacement relations in nonlinear theories of rods and shells via the representation of the finite rotational displacement matrix in terms of the exponential of an antisymmetric matrix.  相似文献   

4.
The stability of noncircular shells, in contrast to that of circular ones, has not been studied sufficiently well yet. The publications about circular shells are counted by thousands, but there are only several dozens of papers dealing with noncircular shells. This can be explained on the one hand by the fact that such shells are less used in practice and on the other hand by the difficulties encountered when solving problems involving a nonconstant curvature radius, which results in the appearance of variable coefficients in the stability equations. The well-known solutions of stability problems were obtained by analytic methods and, as a rule, in the linear approximation without taking into account the moments and nonlinearity of the shell precritical state, i.e., in the classical approximation. Here we use the finite element method in displacements to solve the problem of geometrically nonlinear deformation and stability of cylindrical shells with noncircular contour of the transverse cross-section. We use quadrilateral finite elements of shells of natural curvature. In the approximations to the element displacements, we explicitly distinguish the displacements of elements as rigid bodies. We use the Lagrange variational principle to obtain a nonlinear system of algebraic equations for determining the unknown nodal finite elements. We solve the system by a step method with respect to the load using the Newton-Kantorovich linearization at each step. The linear systems are solved by the Kraut method. The critical loads are determined with the use of the Silvester stability criterion when solving the nonlinear problem. We develop an algorithm for solving the problem numerically on personal computers. We also study the nonlinear deformation and stability of shells with oval and elliptic transverse cross-section in a wide range of variations in the ovalization and ellipticity parameters. We find the critical loads and the shell buckling modes. We also examine how the critical loads are affected by the strain nonlinearity and the ovalization and ellipticity of shells.  相似文献   

5.
This paper contains an extensive global treatment of radial motions of compressible nonlinearly viscoelastic cylindrical and spherical shells under time-dependent pressures. It furnishes a variety of conditions on a general class of material properties and on the pressure terms ensuring that there are solutions existing for all times, there are unbounded globally defined solutions, there are solutions that blow up in finite time, and there are solutions having the same period as that of the pressure terms. The shells are described by a geometrically exact 2-dimensional theory in which the shells suffer thickness strains as well as the standard stretching of their base surfaces. Consequently their motions are governed by fourth-order systems of semilinear ordinary differential equations. This work shows that there are major qualitative differences between the nonlinear dynamical behaviors of cylindrical and spherical shells.   相似文献   

6.
This paper presents a semi-analytical finite element analysis of pole-type structures with circular hollow cross-section. Based on the principle of stationary potential energy and Novozhilov’s derivation of nonlinear strains, the formulations for the geometric nonlinear analysis of general shells are derived. The nonlinear shell-type analysis is then manipulated and simplified gradually into a beam-type analysis with special emphasis given on the relationships of shell-type to beam-type and nonlinear to linear analyses. Based on the theory of general shells and the finite element method, the approach presented herein is employed to analyze the ovalization of the cross-section, large displacements, the P-Δ effect as well as the overall buckling of pole-type structures. Illustrative examples are presented to demonstrate the applicability and the efficiency of the present technique to the large deformation of fiber-reinforced polymer composite poles accompanied with comparisons employing commercial finite element codes.  相似文献   

7.
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells  相似文献   

8.
将正交曲线坐标下的格林应变张量引入到薄壳大变形分析,通过建立恰当的基本假设,直接导出了用格林应变张量表示的壳体变形几何方程,将该方程代入到本构方程,由能量原理得到了小应变非线性变形平衡方程、内力方程和边界条件,在此基础上提出了大应变变形的简化分析方法.文中导得的方程涵盖薄板壳大、小变形的全部方程,推导过程简捷、系统,所得结果规则、清晰,与此前有关分析方法的结果完全吻合.  相似文献   

9.
双曲率壳是飞机、汽车以及船舶上常见的薄壁结构,其中性面可看作是一条动曲线沿着另一条曲线扫掠所形成的曲面.双曲率壳的非线性理论不断更新推动着双曲率壳力学行为的研究.随着工程实际应用的不断改进,如功能梯度材料(FGM),加筋壳,弹性地基模型等的引入,双曲率壳在强度、变形和稳定性等方面的研究得到了进一步促进.本文首先回顾了双曲率壳结构非线性力学基本理论发展过程,主要阐述了经典的二维板壳理论,如Donnell 薄壳理论,一阶剪切变形壳理论,高阶剪切变形壳理论,和三维板壳理论的理论体系及基本公式,并对几种理论之间的联系和应用进行了总结和讨论,简述了近几十年来国内外学者在双曲率壳非线性弯曲、稳定性和振动等方面的最新研究成果,最后对双曲率壳体研究目前的局限性和未来的研究方向进行了探讨.  相似文献   

10.
A dynamic nonlinear theory for layered shallow shells is derived by means of the von Karman-Tsien theory, modified by the generalized Berger-approximation. Moderately thick shells with polygonal planform composed of multiple perfectly bonded layers are considered. The shell edges are assumed to be prevented from in-plane motions and are simply supported. A distributed lateral force loading is applied to the structure, and additionally, the influence of a static thermal prestress, corresponding to a spatial distribution of cross-sectional mean temperature, is taken into account. In the special case of laminated shells made of transversely isotropic layers with physical properties symmetrically distributed about the middle surface, a correspondence to moderately thick homogeneous shells is found. Application of a multi-mode expansion in the Galerkin procedure to the governing differential equation, where the eigenfunctions of the corresponding linear plate problem are used as space variables, renders a coupled set of ordinary time differential equations for the generalized coordinates with cubic as well as quadratic nonlinearities. The nonlinear steady-state response of shallow shells subjected to a time-harmonic lateral excitation is investigated and the phenomenon of primary resonance is studied by means of the perturbation method of multiple scales. A unifying non-dimensional representation of the nonlinear frequency response function is presented that is independent of the special shell planform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号