首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
扩散方程单内点精细积分法与差分法比较研究   总被引:3,自引:0,他引:3  
一维扩散方程初值问题可以用全域或子域精细积分求解。子域积分可以采用不同数量的内点,单内点是其最简单的情况。当单内点精细积分中的传递函数即指数函数用其泰勒展开式的一阶近似来替代时,精细积分转化为差分方程。本文研究了这一对应关系。各种常见差分格式均找到了对应的单点精细积分格式,并在单点精细积分一般公式中得到了统一表达形式  相似文献   

2.
旋翼气动弹性耦合动力学方程本质上是一组刚性比较大的非线性偏微分方程。在有限元结构离散后,可改写为非齐次微分方程组,其中非齐次项是桨叶运动量(位移与速度)和气动载荷的函数。针对这类方程,本文尝试引入精细积分法及其衍生格式,借助数值方法计算Duhamel积分项。从积分精度与数值稳定性方面比较研究具有代表性的精细库塔法和高精度直接积分法。结合隐式积分算法,评估精细积分法应用于旋翼动力学方程的可行性。算例表明,精细积分法对矩形直桨叶动力学方程具有足够的求解精度。  相似文献   

3.
钟万勰院士于1991年首先提出计算矩阵指数的精细积分方法,其要点是2N类算法和增量存储。精细积分方法可给出矩阵指数在计算机意义上的精确解,为常微分方程的数值计算提供了高精度、高稳定性的算法,现已成功应用于结构动力响应、随机振动、热传导以及最优控制等众多领域。本文首先介绍矩阵指数精细积分方法的提出、基本思想和发展;然后依次介绍在时不变/时变线性微分方程、非线性微分方程以及大规模问题求解中发展起来的各种精细积分方法,分析了其优缺点和适用范围;最后介绍了精细积分方法的基本思想在两点边值问题、椭圆函数和病态代数方程等问题的扩展应用,进一步展示了该思想的特色。  相似文献   

4.
色散方程的高稳定性两层四点显格式的单点精细积分法   总被引:1,自引:0,他引:1  
基于单点精细积分的思想,对色散方程Ut=aUxxx构造了一类高稳定性的两层四点显式差分格式,其局部截断误差为O(τ+h)稳定性条件为│R│=│aτ/h^3│≤f(β),对任意正实数β为单调递增函数,它们不仅显著地改善了同类格式的稳定性条件│R│≤0.25而且也优于众多三层多点(5点或5点以上)显格式的稳定性条件。  相似文献   

5.
二阶双曲型方程的精细时程积分法   总被引:2,自引:0,他引:2  
对于二阶双曲型偏微分方程初边值问题,可以用有限差分法进行求解。通常的有限差分法在使用过程中受到精确度和稳定性的限制,本文提出求解二阶双曲型方程的精细时程积分法。由于这种方法是半解析方法,在时间域上可以精确计算,所以这种方法不仅精确度高,而且还绝对稳定。文末的数值算例进一步验证了上述结构,而且对大的时间步长(例如△t=0.5)仍然获得精度很高的数值结果。可见,精细时程积分法是一种很实用的方法。  相似文献   

6.
针对非齐次动力学方程■,结合精细积分法和微分求积法,利用同阶的显式龙格-库塔法对计算过程中待求的v_(k+i/s)(i=1,2,…,s)进行预估,提出了一种避免状态矩阵求逆的高效精细积分单步方法。该方法采用精细积分法计算e~(Ht),而Duhamel积分项采用s级s阶的时域微分求积法,计算格式统一且易于编程,可灵活实现变阶变步长。仿真结果表明,与其他单步法及预估校正-辛时间子域法进行数值比较,该方法具有高精度、高效率及良好的稳定性,在求解大规模动力系统时间响应问题中具有较大的优势。  相似文献   

7.
基于文(1)中的单点精细积分方法,对色散方程Ut=aUxxx提出了一种构造高稳定性三层五点(蛙跳)显格式的广义单点精细积分法,文中格式的局部截断误差为O(x^2+h^2),而稳定性条件为|R|≤g(β)(其中g对任意正实数是单调递增函数),同时类格式中最好的。  相似文献   

8.
子域精细积分及偏微分方程数值解   总被引:3,自引:2,他引:3  
对于偏微分方程半解析法的方程,精细时程积分虽然能求出高度准确的解,但往往面临矩阵尺度太大的困难;另一方面差分法虽然有带宽小的优点,但有稳定性及精度方面的问题.本文提出子域精细积分法,既可利用精细积分的数值优点,又有带宽小的好处.数值例题表明了子域精细积分法的效能.  相似文献   

9.
数值流形方法(NMM)因其特有的双覆盖系统(数学覆盖和物理覆盖)在域离散方面具有独特的优势,而精细时间积分法则具有精度高、无条件稳定、无振荡以及计算结果不依赖于时间步长等特点。发展了用于研究二维瞬态热传导问题的精细积分NMM。结合待求问题的控制方程和边界条件,并基于修正变分原理导出了NMM的总体方程,给出了求解此类时间相依方程的精细时间积分及空间积分策略,选取了两个典型算例对方法的有效性进行了验证,结果表明本文方法可以高效高精度地求解瞬态热传导问题。  相似文献   

10.
精细积分方法的评估与改进   总被引:9,自引:1,他引:8  
详细分析了结构动力分析的精细积分方法的稳定性、计算精度,在此基础上提出了对现有精细积分方法的改进策略。算例证实了本文对精细积分方法改进的科学性与可行性。  相似文献   

11.
This paper is devoted to the study of the whirling phenomena of flexible rotors due to dry friction. The mechanical model used here is a two-degree-of-freedom system in which the rubbing plane is not coincident with the rotating plane of the lumped mass. The characteristic equation of whirl speeds is derived and the whirling modes are obtained. The dynamic stability of each admissible whirling motion is also discussed. The results show that the whirl speeds are always higher than the critical speed of the shaft.  相似文献   

12.
提出一种Fourier-Legendre谱元方法用于求解极坐标系下的Navier-Stokes方程,其中极点所在单元的径向采用Gauss-Radau积分点,避免了r=0处的1/r坐标奇异性。时间离散采用时间分裂法,引入数值同位素模型跟踪同位素的输运过程验证数值模拟的精度,分别利用谱元法和有限差分法的迎风差分格式求解匀速和加速坩埚旋转流动中的同位素方程。计算结果表明,有限差分法中的一阶迎风差分格式存在严重的数值假扩散,二阶迎风差分格式的数值结果较精确,增加节点可以有效地缓解数值扩散。然而,谱元法具有以较少节点得到高精度解的优势。  相似文献   

13.
基于单点子域精细积分的思想,针对抛物线型热传导方程初边值问题,提出了多点子域积分的概念,推出了一种多点子域积分的FTCS格式。该格式为显格式,并证明其为无条件稳定。数值算例表明,多点子域积分的FTCS格式具有比单点子域积分的FTCS格式收敛速度快的特点。  相似文献   

14.
精细积分法在电报方程求解中的应用   总被引:1,自引:0,他引:1  
将精细积分法应用到了二维的电报方程的数值计算之中。实例计算表明,该方法具有简单、计算精度高、无条件稳定、不需要进行复杂、费时的频域一时域转换及卷积积分,直接时域分析,处理非零初始值容易等优点。与传统的FFT法及NILT法相比,其效率更高,功能更强。  相似文献   

15.
基于Fourier级数的时变周期系数Riccati微分方程精细积分   总被引:1,自引:1,他引:0  
结合Fourier级数展开方法,本文提出了基于精细积分的时变周期系数Riccati微分方程求解高效算法.首先,利用Fourier级数展开方法将周期系统表示成三角级数形式,在一个积分步内使用精细积分方法得到对应Hamilton系统状态转移矩阵的表达式.然后,通过Riccati变换的方法,得到含有状态转移矩阵的时变周期系数Riccati微分方程解的递推格式.本文方法充分利用了方程本身的周期性特点,文中的数值算例表明算法具有计算效率高、结果可靠等优势.  相似文献   

16.
结构动力方程的更新精细积分方法   总被引:26,自引:3,他引:26  
汪梦甫  周锡元 《力学学报》2004,36(2):191-195
将高斯积分方法与精细积分方法中的指数矩阵运算技巧结合起来,建立了精细积分法的更新形式及计算过程,对该更新精细积分方法的稳定性进行了论证与探讨。在实施精细积分过程中不必进行矩阵求逆,整个积分方法的精度取决于所选高斯积分点的数量。这种方法理论上可实现任意高精度,计算效率较高,其稳定性条件极易满足。数值例题也显示了这种方法的有效性。  相似文献   

17.
ONTHEBOUNDEDNESSANDTHESTABILITYRESULTSFORTHESOLUTIONOFCERTAINFOURTHORDERDIFFERENTIALEQUATIONSVIATHEINTRINSICMETHODCemilTUNC;A...  相似文献   

18.
This paper presents a parametric finite‐difference scheme concerning the numerical solution of the one‐dimensional Boussinesq‐type set of equations, as they were introduced by Peregrine (J. Fluid Mech. 1967; 27 (4)) in the case of waves relatively long with small amplitudes in water of varying depth. The proposed method, which can be considered as a generalization of the Crank‐Nickolson method, aims to investigate alternative approaches in order to improve the accuracy of analogous methods known from bibliography. The resulting linear finite‐difference scheme, which is analysed for stability using the Fourier method, has been applied successfully to a problem used by Beji and Battjes (Coastal Eng. 1994; 23 : 1–16), giving numerical results which are in good agreement with the corresponding results given by MIKE 21 BW (User Guide. In: MIKE 21, Wave Modelling, User Guide. 2002; 271–392) developed by DHI Software. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
基于精细积分技术的非线性动力学方程的同伦摄动法   总被引:2,自引:0,他引:2  
将精细积分技术(PIM)和同伦摄动方法(HPM)相结合,给出了一种求解非线性动力学方程的新的渐近数值方法。采用精细积分法求解非线性问题时,需要将非线性项对时间参数按Taylor级数展开,在展开项少时,计算精度对时间步长敏感;随着展开项的增加,计算格式会变得越来越复杂。采用同伦摄动法,则具有相对筒单的计算格式,但计算精度较差,应用范围也限于低维非线性微分方程。将这两种方法相结合得到的新的渐近数值方法则同时具备了两者的优点,既使同伦摄动方法的应用范围推广到高维非线性动力学方程的求解,又使精细积分方法在求解非线性问题时具有较简单的计算格式。数值算例表明,该方法具有较高的数值精度和计算效率。  相似文献   

20.
An improved precise integration method(IPIM) for solving the differential Riccati equation(DRE) is presented.The solution to the DRE is connected with the exponential of a Hamiltonian matrix,and the precise integration method(PIM) for solving the DRE is connected with the scaling and squaring method for computing the exponential of a matrix.The error analysis of the scaling and squaring method for the exponential of a matrix is applied to the PIM of the DRE.Based on the error analysis,the criterion for choosing two parameters of the PIM is given.Three kinds of IPIMs for solving the DRE are proposed.The numerical examples show that the IPIM is stable and gives the machine accuracy solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号