首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, bifurcation trees of period-3 motions to chaos in the periodically forced, hardening Duffing oscillator are investigated analytically. Analytical solutions for period-3 and period-6 motions are used for the bifurcation trees of period-3 motions to chaos. Such bifurcation trees are based on the Hopf bifurcations of asymmetric period-3 motions. In addition, an independent symmetric period-3 motion without imbedding in chaos is discovered, and such a symmetric period-3 motion possesses saddle-node bifurcations only. The switching of symmetric to asymmetric period-3 motions is completed through saddle-node bifurcations, and the onset of asymmetric period-6 motions occurs at the Hopf bifurcations of asymmetric period-3 motions. Continuously, the onset of period-12 motions is at the Hopf bifurcation of asymmetric period-6 motions. With such bifurcation trees, the chaotic motions relative to asymmetric period-3 motions can be determined analytically. This investigation provides a systematic way to study analytical dynamics of chaos relative to period-m motions in nonlinear dynamical systems.  相似文献   

2.
Luo  Albert C. J.  Xing  Siyuan 《Nonlinear dynamics》2017,88(4):2831-2862
Nonlinear Dynamics - In this paper, bifurcation trees of period-3 motions to chaos in a periodically forced, time-delayed, hardening Duffing oscillator are investigated by a semi-analytical method....  相似文献   

3.
Bifurcations and route to chaos of the Mathieu–Duffing oscillator are investigated by the incremental harmonic balance (IHB) procedure. A new scheme for selecting the initial value conditions is presented for predicting the higher order periodic solutions. A series of period-doubling bifurcation points and the threshold value of the control parameter at the onset of chaos can be calculated by the present procedure. A sequence of period-doubling bifurcation points of the oscillator are identified and found to obey the universal scale law approximately. The bifurcation diagram and phase portraits obtained by the IHB method are presented to confirm the period-doubling route-to-chaos qualitatively. It can also be noted that the phase portraits and bifurcation points agree well with those obtained by numerical time-integration.  相似文献   

4.
The free vibration of Duffing oscillator with time-delayed fractional-order Proportional-Integral-Derivative (FOPID) controller based on displacement feedback is studied. The second-order approximate analytical solution is obtained by KBM asymptotic method. The effects of the parameters in FOPID controller on the dynamical properties are characterized by some equivalent parameters. The correctness of the approximate analytical results is verified by the numerical results. The effects of the time-delayed FOPID controller with displacement feedback on control performances of Duffing oscillator are analyzed in detail by time response, and the stability conditions of zero solution and periodic motions are also presented. Finally, the control performances on Duffing oscillator with large damping are further analyzed. And the results show that one could take the advantage of time delay, when the parameters of time-delayed FOPID controller are chosen reasonably.  相似文献   

5.
An electronic model of Duffing oscillator with a characteristic memristive nonlinear element is proposed instead of the classical cubic nonlinearity. The memristive Duffing oscillator circuit system is mathematically modeled, and the stability analysis presents the evolution of the proposed system. The dynamical behavior of this circuit is investigated through numerical simulations, statistical analysis, and real-time hardware experiments, which have been carried out under the external periodic force. The chaotic dynamics of the circuit is studied by means of phase diagram. It is found that the proposed circuit system shows complex behaviors, like bifurcations and chaos, three tori, transient chaos, and intermittency for a certain range of circuit parameters. The observed phenomena and scenario are illustrated in detail through experimental and numerical studies of memristive Duffing oscillator circuit. The existence of regular and chaotic behaviors is also verified by using 0–1 test measurements. In addition, the robustness of the signal strength is confirmed through signal-to-noise ratio. The numerically observed results are confirmed from the laboratory experiment.  相似文献   

6.
OGY法实现混沌控制的参数辩识研究   总被引:1,自引:0,他引:1  
给出了在系统方程未知情况下,采用OGY控制策略,通过混沌的部分测试信息辩识控制参数的方法,并对Duffing方程及强迫Brusselator振子方程的参数辩识及混沌控制进行了数值计算;讨论了使用这一方法实现控制时的一些关键问题,给出了实现控制的一些重要参数;发现了对Duffing方程使用同一参数辩识值,可将混沌控制到不同的一倍周期轨道及高倍周期轨道上的新现象。  相似文献   

7.
The effect of a delay feedback control (DFC), realized by displacement in the Duffing oscillator, for parameters which generate strange chaotic Ueda attractor is investigated in this paper. First, the classical Duffing system without time delay is analysed to find stable and especially unstable periodic orbits which can be stabilized by means of displacement delay feedback. The periodic orbits are found with help of the continuation method using the AUTO97 software. Next, the DFC is introduced with a time delay and a feedback gain parameters. The proper time delay and feedback gain are found in order to destroy the chaotic attractor and to stabilize the periodic orbit. Finally, chatter generated by time delay component is suppressed with help of an external excitation.  相似文献   

8.
Gusso  André  Ujevic  Sebastian  Viana  Ricardo L. 《Nonlinear dynamics》2021,103(2):1955-1967

In this work, we demonstrate numerically that two-frequency excitation is an effective method to produce chaotification over very large regions of the parameter space for the Duffing oscillator with single- and double-well potentials. It is also shown that chaos is robust in the last case. Robust chaos is characterized by the existence of a single chaotic attractor which is not altered by changes in the system parameters. It is generally required for practical applications of chaos to prevent the effects of fabrication tolerances, external influences, and aging that can destroy chaos. After showing that very large and continuous regions in the parameter space develop a chaotic dynamics under two-frequency excitation for the double-well Duffing oscillator, we demonstrate that chaos is robust over these regions. The proof is based upon the observation of the monotonic changes in the statistical properties of the chaotic attractor when the system parameters are varied and by its uniqueness, demonstrated by changing the initial conditions. The effects of a second frequency in the single-well Duffing oscillator is also investigated. While a quite significant chaotification is observed, chaos is generally not robust in this case.

  相似文献   

9.
Steady motions of the Van der Pol oscillator and an oscillator with hysteresis are studied numerically in this paper. Some features of periodic, almost periodic and chaotic motions of forced self-sustained oscillators are investigated. This paper has been presented at the ICTAM XVI Lyngby.  相似文献   

10.
The primary resonance response of an asymmetric Duffing oscillator with no linear stiffness term and with hardening characteristic is investigated in this paper. An approximate solution corresponding to the steady-state response is sought by applying the harmonic balance method. Its stability is also studied. It is found that different shapes of frequency-response curves can exist. Multiple-valued solutions, indicating the occurrence of jump phenomena, are observed analytically and confirmed numerically. The influence of the system parameters on the primary resonance response is also examined.  相似文献   

11.
The jump and bifurcation of Duffing oscillator with hardening spring subject to narrow-band random excitation are systematically and comprehensively examined. It is shown that, in a certain domain of the space of the oscillator and excitation parameters, there are two types of more probable motions in the stationary response of the Duffing oscillator and jumps may occur. The jump is a transition of the response from one more probable motion to another or vise versa. Outside the domain the stationary response is either nearly Gaussian or like a diffused limit cycle. As the parameters change across the boundary of the domain the qualitative behavior of the stationary response changes and it is a special kind of bifurcation. It is also shown that, for a set of specified parameters, the statistics are unique and they are independent of initial condition. It is pointed out that some previous results and interpretations on this problem are incorrect. The project supported by National Natural Science Foundation of China  相似文献   

12.
An analytical investigation is carried out on the free vibration of a two degree of freedom weakly nonlinear oscillator. Namely, the method of multiple time scales is first applied in deriving modulation equations for a van der Pol oscillator coupled with a Duffing oscillator. For the case of non-resonant oscillations, these equations are in standard normal form of a codimension two (Hopf-Hopf) bifurcation, which permits a complete analysis to be performed. Three different types of asymptotic states-corresponding to trivial, periodic and quasiperiodic motions of the original system-are obtained and their stability is analyzed. Transitions between these different solutions are also identified and analyzed in terms of two appropriate parameters. Then, effects of a coupling, a detuning, a nonlinear stiffness and a damping parameter are investigated numerically in a systematic manner. The results are interpreted in terms of classical engineering terminology and are related to some relatively new findings in the area of nonlinear dynamical systems.  相似文献   

13.
Bifurcations in a forced softening duffing oscillator   总被引:1,自引:0,他引:1  
The response of a damped Duffing oscillator of the softening type to a harmonic excitation is analyzed in a two-parameter space consisting of the frequency and amplitude of the excitation. An approximate procedure is developed for the generation of the bifurcation diagram in the parameter space of interest. It is a combination of second-order perturbation solutions of the system in the neighborhood of its non-linear resonances and Floquet analysis. The results show that the proposed scheme is capable of predicting symmetry-breaking and period-doubling bifurcations as well as Jumps to either bounded or unbounded motions. The results obtained are validated using analogand digital-computer simulations, which show chaos and unbounded motions, among other behaviors.  相似文献   

14.
A new approach is presented for solving nonlinear oscillatory systems. Parker-Sochacki method (PSM) is combined with Laplace-Padé resummation method to obtain approximate periodic solutions for three nonlinear oscillators. The first one is Duffing oscillator with quintic nonlinearity which has odd nonlinearity. The second one is Helmholtz oscillator which has even nonlinearity. The last one is a strongly nonlinear oscillator, namely; relativistic harmonic oscillator which has a fractional order nonlinearity. Solutions are also obtained using Runge-Kutta numerical method (RKM) and Lindstedt-Poincare method (LPM). However, the LPM could not be used to solve the relativistic harmonic oscillator since it is a strongly nonlinear oscillator. The comparison between these solutions shows that the convergence zone for the Parker-Sochacki with Laplace-Padé method (PSLPM) is remarkably increased compared to PSM method. It also shows that the PSLPM solutions are in excellent agreement with LPM solutions for Duffing oscillator and are superior to LPM solutions in case of Helmholtz oscillator. The PSLPM succeeded to give an accurate periodic solution for the relativistic harmonic oscillator. For a wide range of solution domain, comparing PSLPM with RKM prove the correctness of the PSLPM method. Hence, the PSLPM method can be used with satisfied confidence to solve a broad class of nonlinear oscillators.  相似文献   

15.
Chaotic oscillations in pipes conveying pulsating fluid   总被引:1,自引:0,他引:1  
Chaotic motions of a simply supported nonlinear pipe conveying fluid with harmonie velocity fluetuations are investigated. The motions are investigated in two flow velocity regimes, one below and above the critical velocity for divergence. Analyses are carried out taking into account single mode and two mode approximations in the neighbourhood of fundamental resonance. The amplitude of the harmonic velocity perturbation is considered as the control parameter. Both period doubling sequence and a sudden transition to chaos of an asymmetric period 2 motion are observed. Above the critical velocity chaos is explained in terms of periodic motion about the equilibrium point shifting to another equilibrium point through a saddle point. Phase plane trajectories, Poincaré maps and time histories are plotted giving the nature of motion. Both single and two mode approximations essentially give the same qualitative behaviour. The stability limits of trivial and nontrivial solutions are obtained by the multiple time scale method and harmonic balance method which are in very good agreement with the numerical results.  相似文献   

16.
An asymmetric nonlinear oscillator representative of the finite forced dynamics of a structural system with initial curvature is used as a model system to show how the combined use of numerical and geometrical analysis allows deep insight into bifurcation phenomena and chaotic behaviour in the light of the system global dynamics.Numerical techniques are used to calculate fixed points of the response and bifurcation diagrams, to identify chaotic attractors, and to obtain basins of attraction of coexisting solutions. Geometrical analysis in control-phase portraits of the invariant manifolds of the direct and inverse saddles corresponding to unstable periodic motions is performed systematically in order to understand the global attractor structure and the attractor and basin bifurcations.  相似文献   

17.
含噪双稳杜芬振子矩方程的分岔与随机共振   总被引:2,自引:0,他引:2  
张广军  徐健学  姚宏 《力学学报》2006,38(2):288-293
研究了含噪声的双稳杜芬振子矩方程的分岔与随机共振的关系,并根据它们的关系, 从另 一个角度揭示了随机共振发生的机制. 首先在It?方程的基础上,导出了双稳杜芬振子在白噪声和弱周期信号作用下的矩方程,其次以噪声强度 为分岔参数分析了矩方程的分岔特性,再次分析了矩方程的分岔与双稳杜芬振子随机共振 之间的关系,最后根据该对应关系从另一种观点提出了双稳杜芬振子随机共振的机制,该 机制是由于以噪声强度为分岔参数的矩方程发生了分岔,而分岔使得原系统响应均值的能量分布发生了转移,使能 量向频率等于输入信号频率的分量处集中,使得弱信号得到了放大,随机共振发生了.  相似文献   

18.
采用长轴承解析模型研究滑动轴承支承的平衡单盘柔性转子-轴承系统的自激振动,把结合打靶法的延续算法应用于柔性平衡转子-轴承系统Hopf分叉后周期解的追踪和求解上,基于Floquet理论对周期解的稳定性加以分析.通过持续追踪周期解频率变化并与失稳固有频率进行对比,分析了自激锁相现象,研究了非线性油膜力自激源对系统的作用机理.运用Poincare映射、分叉图、及Lyapnov指数对周期解分叉、混沌及进入和脱离混沌的过程进行了分析.  相似文献   

19.
A semi-analytic approach is proposed to analyze steady state responses of dynamic systems containing fractional derivatives. A major purpose is to efficiently combine the harmonic balancing (HB) technique and Yuan–Agrawal (YA) memory-free principle. As steady solutions being expressed by truncated Fourier series, a simple yet efficient way is suggested based on the YA principle to explicitly separate the Caputo fractional derivative as periodic and decaying non-periodic parts. Neglecting the decaying terms and applying HB procedures result into a set of algebraic equations in the Fourier coefficients. The linear algebraic equations are solved exactly for linear systems, and the non-linear ones are solved by Newton–Raphson plus arc-length continuation algorithm for non-linear problems. Both periodic and triple-periodic solutions obtained by the presented method are in excellent agreement with those by either predictor–corrector (PC) or YA method. Importantly, the presented method is capable of detecting both stable and unstable periodic solutions, whereas time-stepping integration techniques such as YA and PC can only track stable ones. Together with the Floquet theory, therefore, the presented method allows us to address the bifurcations in detail of the steady responses of fractional Duffing oscillator. Symmetry breakings and cyclic-fold bifurcations are found and discussed for both periodic and triple-periodic solutions.  相似文献   

20.
A method for controlling nonlinear dynamics and chaos previouslydeveloped by the authors is applied to the classical Duffing oscillator.The method, which consists in choosing the best shape of externalperiodic excitations permitting to avoid the transverse intersection ofthe stable and unstable manifolds of the hilltop saddle, is firstillustrated and then applied by using the Melnikov method foranalytically detecting homoclinic bifurcations. Attention is focused onoptimal excitations with a finite number of superharmonics, because theyare theoretically performant and easy to reproduce. Extensive numericalinvestigations aimed at confirming the theoretical predictions andchecking the effectiveness of the method are performed. In particular,the elimination of the homoclinic tangency and the regularization offractal basins of attraction are numerically verified. The reduction ofthe erosion of the basins of attraction is also investigated in detail,and the paper ends with a study of the effects of control on delayingcross-well chaotic attractors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号