首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
2.
A three-dimensional finite-element numerical model is presented for simulation of the steady-state performance characteristics of heat pipes. The mass, momentum and energy conservation equations are solved for the liquid and vapor flow in the entire heat pipe domain. The calculated outer wall temperature profiles are in good agreement with the experimental data. The estimations of the liquid and vapor pressure distributions and velocity profiles are also presented and discussed. It is shown that the vapor flow field remains nearly symmetrical about the heat pipe centerline, even under a non-uniform heat load. The analytical method used to predict the heat pipe capillary limit is found to be conservative.  相似文献   

3.
 An experimental and numerical investigation of heat transfer and fluid flow was conducted for corrugated-undulated plate heat exchanger configurations under transitional and weakly turbulent conditions. For a given geometry of the corrugated plates the geometrical characteristics of the undulated plates, the angle formed by the latter with the main flow direction, and the Reynolds number were made to vary. Distributions of the local heat transfer coefficient were obtained by using liquid-crystal thermography, and surface-averaged values were computed; friction coefficients were measured by wall pressure tappings. Overall heat transfer and pressure drop correlations were derived. Three-dimensional numerical simulations were conducted by a finite-volume method using a low-Reynolds number k–ɛ model under the assumption of fully developed flow. Computed flow fields provided otherwise inaccessible information on the flow patterns and the mechanisms of heat transfer enhancement. Received on 5 February 1999  相似文献   

4.
More than ever before, dynamic investigation techniques are becoming widely used in the control systems, parameter implementation and state estimators. Indeed, dynamical models describing the response of process systems that are subject to disturbances play a vital role in controlling and optimising these systems. Recently developed in literature, the method of step response analysis provides a promising means towards solving some of the problems associated with the characterisation of transient response of heat exchangers. In Abdelghani-Idrissi et al. (Int J Heat Mass Transfer 44:3721–3730, 2001), authors present analytical expressions of fluids temperatures response time of counter-current heat exchanger when hot fluid step change is applied in the internal tube. This paper describes the extension of this technique to a coflow heat exchanger for which the exact solution of its mathematical model is unavailable.  相似文献   

5.
A three-dimensional numerical analysis of laminar fluid flow and conjugate heat transfer has been conducted for single- and two-layered micro-channel heat sinks. The validity of the numerical model has been confirmed by comparison with available experimental data. Results for the overall thermal resistance, pumping power, the maximum temperature difference on the heat-sink surface where the heat flux is applied, and an overall performance parameter were obtained for single- and two-layered sinks. The effects of Reynolds number, inlet velocity profile, and flow arrangement in the channels (parallel and counter) on these results are presented and discussed. A special emphasis was placed on the comparison between the thermal performances of the parallel and counter flow arrangements and further results were obtained in order to quantify and explain the relative performance under these flow arrangements.  相似文献   

6.
7.
A simplified model of heat transfer was developed to investigate the thermal behavior of heat exchangers and stack plates of thermoacoustic devices. The model took advantage of previous results describing the thermal behavior of the thermoacoustic core and heat transfer in oscillating flow to study the performance of heat exchangers attached to the core. The configuration considered is a flat tube (with a working fluid flowing in the tube) of the thickness of the stack plate attached to both ends of the stack plate. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, transport fluids in the heat exchangers, stack plate and the thermoacoustic working fluid were organized into dimensionless groups that allowed accounting for their impact on the performance of the heat exchangers. Two types of thermal boundary conditions were considered: constant temperature and constant heat flux along the heat exchanger tubes. Numerical simulations were carried out with the model introduced in the paper. The temperature distributions and heat fluxes near the edge of the stack plate were found to be nonlinear. The influence of system parameters on the thermal performance of the heat exchangers was analyzed.This article is dedicated to Prof. D. Mewes, whose knowledge, creativity, enthusiasm and dedication to engineering science was an inspiration to me and to many students, scientists, engineers and colleagues all over the world (C. Herman).  相似文献   

8.
9.
10.
Convective boiling of HCFC123 and FC72 in 0.19, 0.3 and 0.51 mm ID tubes is investigated. The experimental setup as well as the data reduction procedure has carefully been designed, so that the relative uncertainty interval of the measured heat transfer coefficient in microtubes is kept within ±10%. Up to 70 K liquid superheat over the saturation temperature is observed at low heat and mass fluxes. The onset of the superheat is found to be dependent on the mass flux and the boiling number of the refrigerant examined. In the saturated boiling regime, the heat transfer characteristics are much different from those in conventional-size tubes. The heat transfer coefficient is monotonically decreased with increasing the vapor quality, and becomes independent of the mass flux. Most empirical formulas are not in accordance with the present experimental data. Since the prediction using the nucleate boiling term of Kandlikar’s empirical correlations coincides with the present results, the convection effect should be minor in microtubes. On the other hand, the pressure loss characteristics are qualitatively in accordance with the conventional correlation formula while quantitatively much lower. These phenomena can be explained by the fact that the annular flow prevails in microtubes.  相似文献   

11.
One of the serious problems associated with the operation of PCM storage system is the heat transfer in and out of the element containing the PCM. This paper presents the results of an experimental investigation of the effects of radial fins and turbulence promoters on the enhancement of phase change heat transfer external to a horizontal tube submersed in the PCM with the working fluid flowing through it. The experimental measurements were realized on a bare cupper tube and an identical cupper tube fitted with radial fins. The fins investigated are 40, 60, 120 and 180 mm diameters. A turbulence promoter made of stainless steel wire of 1.0 mm diameter coiled in a helical form with a pitch of 25.0 mm was inserted into the cupper tubes. The tests were realized on bare tubes, finned tubes and finned tubes with the turbulence promoter inserted into the finned tubes. The measurements were realized for the working fluid temperatures in the range of −10 °C, to −25 °C and six values of the mass flow rate ranging from 0.013 to 0.031 kg/s. The position of the phase interface was photographed by a high resolution digital camera and scanned to determine the real interface position by comparison with a precision measuring scale. The results of the phase interface position, velocity of the interface, solidified mass fraction and the time for complete solidification are presented in function of the working fluid temperature, the working fluid mass and the tube arrangements. The results are presented and discussed.  相似文献   

12.
13.
Microstructure heat exchangers have unique properties that make them useful for numerous scientific and industrial applications. The power transferred per unit volume is mainly a function of the distance between heat source and heat sink—the smaller this distance, the better the heat transfer. Another parameter governing for the heat transfer is the lateral characteristic dimension of the heat transfer structure; in the case of microchannels, this is the hydraulic diameter. Decreasing this characteristic dimension into the range of several 10s of micrometers leads to very high values for the heat transfer rate.

Another possible way of increasing the heat transfer rate of a heat exchanger is changing the flow regime. Microchannel devices usually operate within the laminar flow regime. By changing from microchannels to three dimensional structures, or to planar geometries with microcolumn arrays, a significant increase of the heat transfer rate can be achieved.

Microheat exchangers in the form of both microchannel devices (with different hydraulic diameters) and microcolumn array devices (with different microcolumn layouts) are presented and compared. Electrically heated microchannel devices are presented, and industrial applications are briefly described.  相似文献   


14.
15.
Two phase flow and heat transfer characteristics of a separate-type heat pipe have been studied experimentally and theoretically. The experimental apparatus have the same geometry for the evaporator and the condenser which consist of 5-tube-banks, with working temperature ranges of 80–125°C. The experimental working fluid is dual-distilled water with corrosion-resistant agents. Heat transfer coefficients for boiling and condensation along with heat flux and working temperature are measured at different filling ratio. According to the results of the experiments, the optimized filling ratio ranges from 16 to 36%. Fitted correlations of average heat transfer coefficients of the evaporator and Nusselt numbers of the condenser at the proposed filling ratio are obtained. Two phase flow characteristics of the evaporator and the condenser as well as their influence on heat transfer are described on the basis of simplified analysis. Reasons for the pulse-boiling process remain to be studied.  相似文献   

16.
The fact that heat is transferred into a heat pipe through the liquid-saturated evaporator wick gives rise to the so-called boiling limit on the heat pipe capacity. The composite nature of the double-wall artery heat pipe (DWAHP) wick structure makes the prediction of the evaporator superheat (Δ Tcrit) and the critical radial heat flux (qr) very difficult. The effective thermal conductivity of the wick, the effective radius of critical nucleation cavity, and the nucleation superheat, which are important parameters for double-wall wick evaporator heat transfer, have been evaluated based on the available theoretical models. Empirical correlations are used to corroborate the experimental results of the 2 m DWAHP. A heat choke mounted on the evaporator made it possible to measure the evaporator external temperatures, which were not measured in the previous tests. The high values of the measured evaporator wall temperatures are explainable with the assumption of a thin layer of vapor blanket at the inner heating surface. It has been observed that partial saturation of the wick (lean evaporator) causes the capillary limit to drop even though it may be good for efficient convective heat transfer through the wick. The 2 m long copper-water heat pipe had a peak performance of 1850 W at 23 W/cm2 with a horizontal orientation.  相似文献   

17.
18.
The nucleate pool boiling heat transfer coefficient of ammonia/water mixture was investigated on a cylindrical heated surface at low pressure of 4-8 bar and at low mass fraction of 0 < xNH3 < 0.3 and at different heat flux. The effect of mass fraction, heat flux and pressure on boiling heat transfer coefficient was studied. The results indicate that the heat transfer coefficient in the mixture decreases with increase in ammonia mass fraction, increases with increase in heat flux and pressure in the investigated range. The measured heat transfer coefficient was compared with existing correlations. The experimental data were predicted with an accuracy of ±20% by the correlation of Calus&Rice, correlation of Stephan-Koorner and Inoue-Monde correlation for ammonia/water mixture in the investigated range of low ammonia mass fraction. The empirical constant of the first two correlations is modified by fitting the correlation to the present experimental data. The modified Calus&Rice correlation predicts the present experimental data with an accuracy of ±18% and the modified Stephan-Koorner correlation with an accuracy of ±16%.  相似文献   

19.
A theoretical model has been developed to investigate the thermal performance of a continuous finned circular tubing of an air-to-air thermosyphon-based heat pipe heat exchanger. The model has been used to determine the heat transfer capacity, which expresses the thermal performance of heat pipe heat exchanger. The model predicts the temperature distribution in the flow direction for both evaporator and condenser sections and also the saturation temperature of the heat pipes. The approach used for the present study considers row-by-row heat-transfer in evaporator and condenser sections of the heat pipe heat exchanger.  相似文献   

20.
Effects of thermal dispersion on heat transfer and temperature field within cross-flow tubular heat exchangers are investigated both analytically and numerically, exploiting the volume averaging theory in porous media. Thermal dispersion caused by fluid mixing due to the presence of the obstacles plays an important role in enhancing heat transfer. Therefore, it must be taken into account for accurate estimations of the exit temperature and total heat transfer rate. It is shown that the thermal dispersion coefficient is inversely proportional to the interstitial heat transfer coefficient. The present analysis reveals that conventional estimations without consideration of the thermal dispersion result in errors in the fluid temperature development and underestimation of the total heat transfer rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号