首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
碳纳米管作为导电相在机敏复合材料中广泛应用,但碳纳米管为团簇材料,在基体中很难均匀分散。本文考虑碳纳米管的非均匀分布特性,提出了计算碳纳米管复合材料电导率的数值方法。通过引入随机谐和函数,建立了碳纳米管体积分数的三维随机场模型。基于细观力学的有效介质理论、Mori-Tanaka方法和H-S界限理论,考虑碳纳米管之间的隧穿效应,发展了复合材料微小体积单元的电导率计算方法。在此基础上,构建了考虑碳纳米管非均匀分布的复合材料等效电导率三维有限元计算模型。数值分析结果与试验值能够很好吻合,表明这一方法可以准确计算碳纳米管复合材料的电导率。本文进一步分析了碳纳米管非均匀分布对复合材料电导率的影响。  相似文献   

2.
平面织物复合材料机械性能的数值细观力学分析   总被引:4,自引:0,他引:4  
本文根据应变能等效原理,利用有限元分析方法,处理了单层平面织物复合材料弹性性质的细观力学估算问题.建立了平面织物增强树脂的单方向波纹模型,对于织物的结构,组分性质与复合材料的宏观性能的关系作了系统处理.给出了一组较完整的平面织物复合材料单层弹性常数的估算结果,数值予告与实验结果比较,表明文中所提出的方法是有效的,并且可以进一步用它来考虑更为完善的平面织物复合材料二维波纹模型的分析.  相似文献   

3.
高扬 《力学学报》2021,53(4):929-943
以石墨稀为代表, 二维材料有着诸多优异的性质, 在下一代电子器件等领域拥有广阔的应用前景. 目前绝大多数关于二维材料的研究都集中在其电子学和光学的性质和应用, 对于其力学性质的研究则相对欠缺, 而力学性质在二维材料的研究和应用中都有着至关重要的意义. 原子力显微镜是低维材料力学性质表征的主要手段, 例如基于原子力显微镜的纳米压痕技术. 本文首先简要介绍了二维材料的基本背景以及原子力显微镜的工作原理. 进一步展示了纳米压痕技术的工作原理和理论背景, 并回顾了利用纳米压痕技术研究二维材料面内力学性质的相关实验和理论工作, 同时探讨了原子力显微镜在表征二维材料力学性能中存在的测量误差及来源. 由于二维材料展现出强烈的各向异性, 纳米压痕技术在能够很好地测量二维材料面内力学性质的同时, 对于二维材料层间力学性质表征等方面存在明显的局限性. 第三部分介绍了一种全新的基于原子力显微镜的埃(?)压痕技术, 该技术能够将形变尺度控制在0.1 nm以内, 从而精确地表征和调控二维材料的层间范德华作用力, 即层间力学性质. 作者在第三部分介绍了通过埃压痕技术表征和调控的石墨烯、氧化石墨烯等二维材料的层间力学性质. 最后简要介绍了范德华异质结材料的基本性质, 探讨了埃压痕技术在该材料力学性质研究中的潜在应用.   相似文献   

4.
基于分子动力学(MD)模拟方法,建立了碳纳米管/硫化天然橡胶复合材料体系模型,采用ReaxFF势函数,模拟了不同碳纳米管(CNT)含量的复合材料的拉伸过程.通过计算复合材料体系的自由体积分数、均方位移及回转半径,分析了材料基本微观性质和碳纳米管团聚的机制,计算结果与实验相符.通过碳纳米管与硫化天然橡胶界面能的计算,发现在加载过程中系统总势能的变化主要由硫化天然橡胶基体引起,其中非键能起主导作用;碳纳米管由于其自身力学性能较好,且与天然橡胶分子链相互作用产生界面能,导致材料力学性能提升,材料的屈服应力随碳纳米管含量的增加而显著升高.  相似文献   

5.
纤维增强复合材料界面的力学行为   总被引:7,自引:1,他引:7  
洗杏娟 《力学进展》1992,22(4):464-478
研究材料的界面和表面的力学行为与破坏机理,是当代材料科学、力学、物理学的前沿课题之一,而复合材料界面问题更有其自身的特殊性和复杂性。本文结合笔者的研究工作重点讨论了纤维复合材料界面力学的共性问题,阐述了复合材料界面的性质、复合材料界面的力学模型和理论、界面力学表征的实验研究、界面损伤破坏机理、界面对复合材料力学性能的影响等5个方面。  相似文献   

6.
碳纳米管/碳纤维增强复合材料(carbon nanotube/carbon fibre reinforced plastic,CNT/CFRP)是一种多尺度复合材料,比传统CFRP有更好的综合性能和更广阔的应用前景。对CNT/CFRP在低速冲击下的响应和破坏进行了数值模拟研究。首先,基于先前的研究通过引入基体增韧因子、残余强度因子并改进损伤耦合方程,建立了新的FRP动态渐进损伤模型;然后,利用新建立的本构模型并结合黏结层损伤模型,对4种碳纳米管含量的增韧碳纤维增强树脂基复合材料层合板在5个能量下的冲击实验进行了数值模拟;最后,将模拟结果与文献中的相关实验结果进行了比较,并讨论了冲击速度的影响。结果表明:新建立的FRP本构模型能够预测CNT/CFRP层合板在低速冲击载荷作用下的响应、破坏过程和分层形貌,模拟得到的载荷-位移曲线和破坏形貌与实验吻合较好;冲击速度会影响CNT/CFRP层合板拉伸和压缩破坏的比例,相同的冲击能量下,更大的冲击速度会造成更多的拉伸破坏。  相似文献   

7.
利用热压成型方法制备了不同PES-C/PTFE含量的碳纤维织物增强复合材料,用LJ-500万能材料试验机和MRH-5A环块试验机分别考察了复合材料的力学性能和摩擦磨损性能,并研究了压制成型温度和等离子处理碳纤维织物对复合材料力学性能的影响.结果表明,碳纤维织物极大提高了PES-C/PTFE树脂弯曲强度,并且有效增加PES-C/PTFE树脂的耐磨性;PES-C/PTFE含量分别为42%和8%的碳纤维织物增强复合材料性力学及摩擦磨损综合性能最好.  相似文献   

8.
在发现碳纳米管后不久,对于这些有趣结构的力学性质--包括高强度、高硬度、低密度和结构的完美性的理论预测,使人们认识到它们可能具有理想的科技应用价值.对这些预测的实验验证或个别验伪以及大量基于不同模型的计算机模拟方法,使得逾10年来对碳纳米管力学的理解日趋深入但远未达到尽头.本文回顾了理论预测,并对这种微小结构的观察和操作中经常用到的富有挑战性的实验技术进行了讨论.略述了采用的计算方法包括从头算法量子力学模拟、经典分子动力学和连续介质模型.多尺度和多物理模型的发展和模拟工具自然而然作为连接基础科学问题和工程应用的结果而出现,而这个主题仍然正在抓紧研究中.这里介绍了研究此主题的一些方法.注意力主要集中于研究力学性质的揭示方面,如杨氏模量、弯曲刚度、屈曲准则、拉伸和压缩强度.最后,讨论了利用这些性质的几个令人兴奋的应用例子,包括纳米绳束、填充的纳米管、纳米机电系统、纳米传感器和纳米管增强复合材料,引用了349篇参考文献. 图41参349  相似文献   

9.
利用平均化方法提出了倾斜内锁型三维机织陶瓷基复合材料弹性性能分析的三维细观力学模型,对材料的弹性性能进行了预测。这个力学模型考虑了倾斜内锁型三维机织陶瓷基复合材料经向纤维束的弯曲和纬向纤维束的平直,纤维束的横截面形状尺寸和相邻纤维束之间的孔洞以及材料制造过程中碳纤维性能下降对弹性性能的影响。基于层合板理论,提出两种单胞应变状态假设分别对材料的九个弹性常数进行了推导计算,结果表明两种方法理论的预测值非常接近。计算结果与实验值比较吻合,表明所提出的细观力学模型是合理的,可以为纺织陶瓷基复合材料的优化设计提供有价值的参考。  相似文献   

10.
碳纳米管的力学性能及碳纳米管复合材料研究   总被引:11,自引:0,他引:11  
辜萍  王宇  李广海 《力学进展》2002,32(4):563-578
对碳纳米管力学行为和碳纳米管复合材料的研究文献进行了综述.首先介绍了碳纳米管结构稳定性和力学性能的研究进展,包括理论模拟和实验的研究结果.结果表明,碳纳米管有着优异的力学性能,其在复合材料应用方面有着巨大的潜力.然后,系统地总结了碳纳米管在增强高分子材料、金属材料和陶瓷材料方面的应用,指出外场力传递效应是值得关注的课题.最后,对该领域工作做了一些讨论和展望.   相似文献   

11.
The excellent properties of carbon nanotubes have generated technological interests in the development of nanotube/rubber composites. This paper describes a finite element formulation that is appropriate for the numerical prediction of the mechanical behavior of rubber-like materials which are reinforced with single walled carbon nanotubes. The considered composite material consists of continuous aligned single walled carbon nanotubes which are uniformly distributed within the rubber material. It is assumed that the carbon nanotubes are imperfectly bonded with the matrix. Based on the micromechanical theory, the mechanical behavior of the composite may be predicted by utilizing a representative volume element. Within the representative volume element, the reinforcement is modeled according to its atomistic microstructure. Therefore, non-linear spring-based line elements are employed to simulate the discrete geometrical structure and behavior of the single-walled carbon nanotube. On the other hand, the matrix is modeled as a continuum medium by utilizing solid elements. In order to describe its behavior an appropriate constitutive material model is adopted. Finally, the interfacial region is simulated via the use of special joint elements of variable stiffness which interconnect the two materials in a discrete manner. Using the proposed multi-scale model, the stress-strain behavior for various values of reinforcement volume fraction and interfacial stiffness is extracted. The influence of the single walled carbon nanotube addition within the rubber is clearly illustrated and discussed.  相似文献   

12.
The multi-scale deformation and interfacial mechanical behavior of carbon nanotube fibers with multi-level structures are investigated by experimental and theoretical methods. Multi-scale experiments including uniaxial tensile testing, in situ Raman spectroscopy, and scanning electron microscopy are conducted to measure the mechanical response of multi-level structures within the fiber under tension. A two-level interfacial mechanical model is then presented to analyze the interfacial bonding strength of mesoscopic bundles and microscopic nanotubes. The evolution characteristics of multi-scale deformation of the fiber are described based on experimental characterization and interfacial strength analysis. The strengthening mechanism of the fiber is further studied. Comprehensive analysis shows that the property of multi-level interfaces is a critical factor for the fiber strength and toughness. Finally, the method of improving the mechanical properties of fiber-based materials is discussed. The result can be used to guide multi-level interface engineering of carbon nanotube fibers and fiber-based composites to produce high performance materials.  相似文献   

13.
超高分子量聚乙烯(UHMWPE)轴承材料在低速重载工况下常发生严重磨损,通过添加改性填料能够显著提升其摩擦学性能. 凹凸棒土(ATP)作为一种改性填料能够增强基体材料的机械性能进而改善其摩擦特性,但是ATP作为填料往往会因为团聚效应而降低材料的补强效果. 通过对ATP进行表面改性处理可克服团聚效应,实现ATP与基体间的均匀共混. 通过表面化学包覆改性法制备由硅烷偶联剂KH570改性处理的ATP与UHMWPE共混制成复合材料,并与纯UHMWPE材料作对照试验. 利用RTEC摩擦试验机研究复合材料在水润滑条件下摩擦系数随载荷和转速的变化,以及材料填充含量对复合材料在低速重载(v=0.55 m/s、Fz=55 N)工况下磨损性能的影响. 利用傅里叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)与电子万能材料试验机分别对ATP改性效果、熔融结晶行为及复合材料的重要力学性能进行表征测试. 试验结束后,利用表面轮廓仪与激光共聚焦显微镜观察复合材料表面形貌并分析其磨损机理. 结果表明:硅烷偶联剂KH570对ATP的改性效果良好,填充改性ATP能提高材料的邵氏硬度,且材料的拉伸性能随填充含量的提高呈下降趋势;对比纯UHMWP材料,复合材料的摩擦系数更低,适量的ATP填充能改善材料磨损性能,减小体积磨损率;试验中改性ATP质量分数为1%的复合材料其摩擦学性能最优,在低速重载时的摩擦系数及体积磨损率与纯UHMWPE相比分别降低了52.45%和37.58%.   相似文献   

14.
A method for the numerical modelling of mechanical behaviour of nanocomposite materials reinforced with the carbon nanotubes, based on computational homogenization as a multi-scale method, is presented. Since the carbon nanotube inside of the representative volume element (RVE) is modelled as a space frame structure, theoretical background and a proper way of modelling of carbon nanotubes is given. Novelty in this paper is an incorporation of interactions, based on the weak van der Waals forces and modelled by nonlinear rod elements, into a multiscale model as described below. An algorithm is developed for analysis of those interactions. Since the problem of modelling nanocomposite structures is a three-dimensional multi-scale problem, one part of this work is dedicated to multi-scale modelling methods, especially to the first order computational homogenization. Computational homogenization and representative volume element are the basis of the presented numerical model of the nanocomposites. Nano scale model is based on beam and non-linear rod finite elements. For the purpose of the software verification, examples, i.e. models of the nanocomposite material are presented. Obtained results are compared with the results given by the other authors.  相似文献   

15.
三维编织复合材料模量的双尺度有限元计算   总被引:4,自引:1,他引:4  
针对三维编织复合材料的力学性能进行了双尺度有限元(TSA)数值计算,给出了计算模型和算法过程,并将数值结果与文献中的实验数据进行了比较,验证了算法的物理准确性。编织复合材料的力学性能不仅依赖于材料的基本组份,也与细观构造相关。双尺度有限元计算可以数值模拟出三维编织复合材料的整体力学性能,从而为材料的研发提供指导。本文的双尺度有限元三维数值计算方法可以推广到其他增强/孔隙等多相复合材料的数值模拟。  相似文献   

16.
Nanocomposites manufactured by combining two nano-structured phases are quite rare. While industry is seeking materials to meet difficult challenges with unique properties, there is no “rule of mixtures” to identify how to mix multiple nanomaterials in a composite structure and make available all required properties. Filler–matrix adhesion and its relation to materials’ properties have been the subject of continuing study due to composites advanced applications. Further on, studies at the interphase created in the area between the constituent materials can provide important information concerning materials interaction and composites behavior; this issue becomes even more interesting when discussing about nano-interphases. In the present investigation, a study of multi-layered nanocomposites is conducted. More precisely, the following four different types of multilayered hybrid nanocomposites were manufactured and tested: Pure titanium–carbon nanotubes–epoxy; pure titanium–epoxy–carbon nanotubes; titanium dioxide nanotubes–carbon nanotubes–epoxy and titanium dioxide nanotubes–epoxy–carbon nanotubes. The nano-mechanical properties of the above-mentioned nanocomposites were investigated using nanoindentation technique. The main conclusion of the present work is that in the case of multilayered nanocomposites, even if nanoindentation is executed on the surface of the same material, results greatly depend on the underlying substrates’ nature and their stacking sequence. Also, nano-interphases created at the contact surfaces between different layers affect the experimentally measured values of the nanomechanical properties (Young’s modulus and hardness) of multilayered nanocomposites.  相似文献   

17.
郭晓龙  姚寅  陈少华 《力学学报》2021,53(5):1334-1344
界面在颗粒增强复合材料中起到传递载荷的关键作用, 界面性能对复合材料整体力学行为产生重要影响. 然而由于复合材料内部结构较为复杂, 颗粒与基体间的界面强度和界面断裂韧性难以确定, 尤其是法向与切向界面强度的分别预测缺乏有效方法. 本文以氧化锆颗粒增强聚二甲基硅氧烷(PDMS)复合材料为研究对象, 提出一种预测颗粒增强复合材料界面力学性能的新方法. 首先, 实验获得纯PDMS基体材料及单颗粒填充PDMS试样的单轴拉伸应力$\!-\!$应变曲线, 标定出PDMS基体材料的单轴拉伸超弹性本构关系; 其次, 建立与单颗粒填充试样一致的有限元模型, 选择特定的黏结区模型描述界面力学行为, 通过样品不同阶段拉伸力学响应的实验与数值结果对比, 分别给出颗粒与基体界面的法向强度、切向强度及界面断裂韧性; 进一步应用标定的界面力学参数, 开展不同尺寸及不同数目颗粒填充试样的实验与数值结果比较, 验证界面性能预测结果的合理性. 本文提出的界面力学性能预测方法简便、易操作、精度高, 对定量预测颗粒增强复合材料的力学性能具有一定帮助, 亦对定量预测纤维增强复合材料的界面性能具有一定参考意义.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号