首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a model predictive control (MPC) scheme based on Hammerstein model is carried on. The use of such nonlinear models complicates the implementation of the MPC in terms of computational time and burden since a nonlinear and so a nonconvex optimization problem will result. The Nelder Mead (NM) algorithm, as a free derivative method, is used to solve the resulting optimization problem. NM algorithm proves its efficiency in terms of computation time and global optimum seeking that can be successfully exploited especially with fast dynamic systems. A comparative study between the NM algorithm and the gradient-based method (GBM) based on computation time is established. The efficiency of the NM algorithm is illustrated with SISO and MIMO examples compared to GBM algorithm.  相似文献   

2.
We consider the parameter estimation problem for Hammerstein finite impulse response (FIR) systems. An estimated noise transfer function is used to filter the input–output data of the Hammerstein system. By combining the key-term separation principle and the filtering theory, a recursive least squares algorithm and a filtering-based recursive least squares algorithm are presented. The proposed filtering-based recursive least squares algorithm can estimate the noise and system models. The given examples confirm that the proposed algorithm can generate more accurate parameter estimates and has a higher computational efficiency than the recursive least squares algorithm.  相似文献   

3.
This paper discusses the identification problems of Hammerstein controlled autoregressive autoregressive (CARAR) systems using the maximum likelihood principle and Newton optimization method. A Newton recursive algorithm and a Newton iterative algorithm using the maximum likelihood principle are presented. The simulation results show that the proposed algorithms can effectively estimate the parameters of the Hammerstein CARAR systems.  相似文献   

4.
Identification of Hammerstein nonlinear models has received much attention due to its ability to describe a wide variety of nonlinear systems. In this paper the maximum likelihood estimator which was originally derived for linear systems is extended to work for Hammerstein nonlinear systems in colored-noise environment. The maximum likelihood estimate is known to be statistically efficient, but can lead to complex nonlinear multidimensional optimization problem; traditional methods solve this problem at the computational cost of evaluating second derivatives. To overcome these shortcomings, a particle swarm optimization (PSO) aided maximum likelihood identification algorithm (Maximum Likelihood-Particle Swarm Optimization, ML-PSO) is first proposed to integrate PSO’s simplicity in implementation and computation, and its ability to quickly converge to a reasonably good solution. Furthermore, a novel adaptive strategy using the evolution state estimation technique is proposed to improve PSO’s performance (maximum likelihood-adaptive particle swarm optimization, ML-APSO). A simulation example shows that ML-APSO method outperforms ML-PSO and traditional recursive least square method in various noise conditions, and thus proves the effectiveness of the proposed identification scheme.  相似文献   

5.
This paper focuses on the identification problem of Hammerstein systems with dual-rate sampling. Using the key-term separation principle, we derive a regression identification model with different input updating and output sampling rates. To solve the identification problem of the dual-rate Hammerstein systems with the unmeasurable variables in the information vector, an auxiliary model-based recursive least squares algorithm is presented by replacing the unmeasurable variables with their corresponding recursive estimates. Convergence properties of the algorithm are analyzed. Simulation results show that the proposed algorithm can estimate the parameters of a class of nonlinear systems.  相似文献   

6.
This paper proposes a linear constrained model predictive control (MPC) to solve the path following problem for quadrotor unmanned aerial vehicles. In the controller, an augmented model is employed to completely eliminate the tracking error due to external disturbances imposed on the quadrotor. The proposed controller is capable of improving the trade-off between feasibility and performance of the system. By approximating the control input sequence in MPC with Laguerre function, the computational burden significantly decreases and the closed-loop performance improves. In addition, a prescribed stability procedure is applied to guarantee the asymptotic stability of the quadrotor error dynamics. Besides, the proposed method improves the numerical ill-conditioning problem in solving MPC, by modifying the position of the closed-loop system poles to lie inside the unit circle. In the simulation results, two scenarios for the quadrotor tracking problem are considered. The results demonstrate the capability and the effectiveness of the proposed control strategy in disturbance rejection, fast trajectory tracking and the quadrotor stability, while a desired performance is achieved.  相似文献   

7.
This paper investigates the modeling of a class of dynamic systems using nonlinear Hammerstein (NLH) model composed of a memory-less polynomial block cascaded to an autoregressive with exogenous input (ARX) time-series block. The model thus defined is known as NLHARX. Both the integer orders and the real coefficients of the model are identified simultaneously in a unified framework using a new algorithm based on a mixed coded integer-real particle swarm optimization. Unlike classical identification methods which assume the orders to be known in advance, the proposed approach is new since it estimates both the real and integer design parameters while minimizing the error between the outputs of the system and the model. The usefulness and the effectiveness of the proposed approach have been demonstrated through extensive simulations. Two illustrative examples are included in this paper: an empirical example and an application to the forecasting of the daily peak-load of Hail region, Saudi Arabia. Future works will be devoted to the identification of more complex dynamic systems, such as Hammerstein–Wiener and the application to the prediction of time-series related to water and energy.  相似文献   

8.
9.
The stabilization of a hopping apparatus is studied. After the design and the principles of control of such an apparatus are described in brief, an optimization algorithm for periodic systems with uncertainty is stated. This algorithm is based on linear matrix inequalities. It is shown how the algorithm can be used to synthesize a system stabilizing a hopping apparatus. The results of a mathematical simulation of such an apparatus, whose control system was synthesized by the above-mentioned algorithm, are presented  相似文献   

10.
Bilinear systems can be viewed as a bridge between linear and nonlinear systems, providing a promising approach to handle various nonlinear identification and control problems. This paper provides a formal justification for the extension of interaction matrices to bilinear systems and uses them to express the bilinear state as a linear function of input–output data. Multiple representations of this kind are derived, making it possible to develop an intersection subspace algorithm for the identification of discrete-time bilinear models. The technique first recovers the bilinear state by intersecting two vector spaces that are defined solely in terms of input–output data. The new input–output-to-state relationships are also used to extend the equivalent linear model method for bilinear system identification. Among the benefits of the proposed approach, it does not require data from multiple experiments, and it does not impose specific restrictions on the form of input excitation.  相似文献   

11.
Zhang  Qian  Wang  Hongwei  Liu  Chunlei 《Nonlinear dynamics》2022,108(3):2337-2351

Aiming at the difficult identification of fractional order Hammerstein nonlinear systems, including many identification parameters and coupling variables, unmeasurable intermediate variables, difficulty in estimating the fractional order, and low accuracy of identification algorithms, a multiple innovation Levenberg–Marquardt algorithm (MILM) hybrid identification method based on the fractional order neuro-fuzzy Hammerstein model is proposed. First, a fractional order discrete neuro-fuzzy Hammerstein system model is constructed; secondly, the neuro-fuzzy network structure and network parameters are determined based on fuzzy clustering, and the self-learning clustering algorithm is used to determine the antecedent parameters of the neuro-fuzzy network model; then the multiple innovation principle is combined with the Levenberg–Marquardt algorithm, and the MILM hybrid algorithm is used to estimate the linear module parameters and fractional order. Finally, the academic example of the fractional order Hammerstein nonlinear system and the example of a flexible manipulator are identified to prove the effectiveness of the proposed algorithm.

  相似文献   

12.
This paper is concerned with the stabilization problem of uncertain chaotic systems with input nonlinearity. The slope parameters of this nonlinearity are unmeasured. A new sliding function is designed, then an adaptive sliding mode controller is established such that the trajectory of the system converges to the sliding surface in a finite time and finite-time reachability is theoretically proved. Using a virtual state feedback control technique, sufficient condition for the asymptotic stability of sliding mode dynamics is derived via linear matrix inequality (LMI). Then the results can be extended to uncertain chaotic systems with disturbances and adaptive sliding mode H controllers are designed. Finally, a simulation example is presented to show the validity and advantage of the proposed method.  相似文献   

13.
全柔性空间机器人运动振动一体化输入受限重复学习控制   总被引:9,自引:7,他引:2  
付晓东  陈力 《力学学报》2020,52(1):171-183
探究基座、臂、关节全柔性影响下空间机器人动力学模拟、运动控制及基座、臂、关节三重柔性振动主动抑制的问题, 设计了不基于系统模型信息的运动振动一体化输入受限重复学习控制算法. 将柔性基座与关节等效为线性弹簧与扭转弹簧, 柔性臂视为欧拉-伯努利梁模型, 利用拉格朗日方程与假设模态法建立动力学模型, 然后, 用奇异摄动理论将模型分解为包含刚性变量与臂柔性振动的慢变子系统, 包含基座、关节柔性振动的快变子系统, 并分别设计相应的子控制器, 构成了带关节柔性补偿的一体化控制算法. 针对慢变子系统, 提出输入受限重复学习控制算法, 由双曲正切函数, 饱和函数与重复学习项构成, 双曲正切函数与饱和函数实现输入力矩受限要求, 重复学习项补偿周期性系统误差, 以完成对基座姿态、关节铰周期轨迹的渐进稳定追踪. 然而, 为了同时抑制慢变子系统臂的柔性振动, 运用虚拟力的概念, 构造同时反映臂柔性振动与系统刚性运动的混合轨迹, 提出了基于虚拟力概念的输入受限重复学习控制器, 保证基座、关节轨迹精确追踪的同时, 对臂的柔性振动主动抑制. 针对快变子系统, 采用线性二次最优控制算法抑制基座与关节的柔性振动. 仿真结果表明: 控制器适用于一般柔性非线性系统, 满足输入力矩受限要求, 实现对周期信号的高精度追踪, 有效抑制基座、臂、关节的柔性振动, 证实算法的可行性.   相似文献   

14.
In an optimal control problem one seeks a time-varying input to a dynamical systems in order to stabilize a given target trajectory, such that a particular cost function is minimized. That is, for any initial condition, one tries to find a control that drives the point to this target trajectory in the cheapest way. We consider the inverted pendulum on a moving cart as an ideal example to investigate the solution structure of a nonlinear optimal control problem. Since the dimension of the pendulum system is small, it is possible to use illustrations that enhance the understanding of the geometry of the solution set. We are interested in the value function, that is, the optimal cost associated with each initial condition, as well as the control input that achieves this optimum. We consider different representations of the value function by including both globally and locally optimal solutions. Via Pontryagin’s maximum principle, we can relate the optimal control inputs to trajectories on the smooth stable manifold of a Hamiltonian system. By combining the results we can make some firm statements regarding the existence and smoothness of the solution set.  相似文献   

15.
针对传统再入轨迹优化方法收敛速度慢、对初值敏感程度高等的局限性,提出了一种基于序列凸优化的再入轨迹快速求解方法.该方法以倾侧角的变化率作为控制量,改进了现有凸化策略,考虑到抑制数值优化过程中由于数值离散方式带来的锯齿化现象,采用 B 样条曲线离散控制量,同时为避免算法在初始猜想值附近出现伪不可行的问题,增加额外虚拟控制量,通过一种"回溯直线"搜索的方法,提高算法的稳定性、快速性和寻优结果的光滑性.为研究飞行器再入过程中的气动参数扰动问题,采用采样点少、易于实现,计算效率高的广义混沌多项式理论研究方法,建立了基于广义混沌多项式和凸优化相结合的再入轨迹鲁棒优化模型,该模型在优化过程中考虑气动参数扰动对寻优结果的影响作用,避免了传统轨迹与制导律的复杂迭代设计环节,可有效降低优化轨迹对气动参数扰动的敏感程度,在气动参数不确定条件的干扰下,依然可以保证飞行器顺利安全的完成飞行任务.最后,以美国某可重复使用飞行器的再入任务为例,验证了基于序列凸优化的再入轨迹优化方法的快速性以及鲁棒优化模型对气动参数扰动的抗干扰性能力,表明了该方法具有一定的工程应用性.  相似文献   

16.
杨奔  雷建长  王宇航 《力学学报》2020,52(6):1610-1620
针对传统再入轨迹优化方法收敛速度慢、对初值敏感程度高等的局限性,提出了一种基于序列凸优化的再入轨迹快速求解方法.该方法以倾侧角的变化率作为控制量,改进了现有凸化策略,考虑到抑制数值优化过程中由于数值离散方式带来的锯齿化现象,采用 B 样条曲线离散控制量,同时为避免算法在初始猜想值附近出现伪不可行的问题,增加额外虚拟控制量,通过一种"回溯直线"搜索的方法,提高算法的稳定性、快速性和寻优结果的光滑性.为研究飞行器再入过程中的气动参数扰动问题,采用采样点少、易于实现,计算效率高的广义混沌多项式理论研究方法,建立了基于广义混沌多项式和凸优化相结合的再入轨迹鲁棒优化模型,该模型在优化过程中考虑气动参数扰动对寻优结果的影响作用,避免了传统轨迹与制导律的复杂迭代设计环节,可有效降低优化轨迹对气动参数扰动的敏感程度,在气动参数不确定条件的干扰下,依然可以保证飞行器顺利安全的完成飞行任务.最后,以美国某可重复使用飞行器的再入任务为例,验证了基于序列凸优化的再入轨迹优化方法的快速性以及鲁棒优化模型对气动参数扰动的抗干扰性能力,表明了该方法具有一定的工程应用性.   相似文献   

17.
This paper considers iterative identification problems for a Hammerstein nonlinear system which consists of a memoryless nonlinear block followed by a linear dynamical block. The difficulty of identification is that the Hammerstein nonlinear system contains the products of the parameters of the nonlinear part and the linear part, which leads to the unidentifiability of the parameters. In order to obtain unique parameter estimates, we express the output of the system as a linear combination of all the system parameters by means of the key-term separation principle and derive a gradient based iterative identification algorithm by replacing the unknown variables in the information vectors with their estimates. The simulation results indicate that the proposed algorithm can work well.  相似文献   

18.
张家铭  杨执钧  黄锐 《力学学报》2020,52(1):150-161
高维、非线性气动弹性系统的模型降阶是当前气动弹性力学与控制领域的研究热点之一.然而国内外现有的非线性模型降阶方法仍存在辨识算法复杂、精度有待提高等问题.本研究提出了一种基于非线性状态空间辨识的跨音速气动弹性模型降阶方法. 首先,该方法基于非定常空气动力的单位脉冲响应数据,采用特征系统实现算法对非线性状态空间模型的线性动力学部分进行系统辨识. 其次,引入状态和控制输入的非线性函数, 采用优化算法对非线性函数的系数矩阵进行优化,进而得到考虑非线性效应的空气动力降阶模型.为了验证该降阶模型在预测跨音速气动弹性力学行为的精确性,本文以三维机翼为研究对象,分别从基于非线性降阶模型的气动力辨识、跨声速颤振边界计算和极限环振荡预测三方面进行了算例验证,并与现有的模型降阶方法进行了对比, 进一步说明本文所提出方法的有效性.研究结果表明, 该降阶模型对上述三类问题的计算精度与直接流-固耦合方法相吻合,可用于高效预测飞行器跨声速气动弹性力学行为.   相似文献   

19.
This paper presents a novel adaptive nonlinear model predictive control design for trajectory tracking of flexible-link manipulators consisting of feedback lineariza-tion, linear model predictive control, and unscented Kalman filtering. Reducing the nonlinear system to a linear system by feedback linearization simplifies the optimization prob-lem of the model predictive controller significantly, which, however, is no longer linear in the presence of parame-ter uncertainties and can potentially lead to an undesired dynamical behaviour. An unscented Kalman filter is used to approximate the dynamics of the prediction model by an online parameter estimation, which leads to an adaptation of the optimization problem in each time step and thus to a better prediction and an improved input action. Finally, a detailed fuzzy-arithmetic analysis is performed in order to quantify the effect of the uncertainties on the control structure and to derive robustness assessments. The control structure is applied to a serial manipulator with two flexible links containing uncertain model parameters and acting in three-dimensional space.  相似文献   

20.
In this paper, a reinforcement learning algorithm is proposed for a class of nonlinear differential chaotic systems. The nonlinear function of the chaotic systems is assumed to be bounded but the bounds are unknown. The unknown bounds need to be on-line adjusted. An adaptive optimal (or near optimal) control input with the reinforcement signal can be obtained compared with the current adaptive control for chaotic systems. The reinforcement signal is approximated by the neural networks. Based on Lyapunov analysis theory and by using Young’s inequalities, the closed-loop system is guaranteed to be stable. Finally, the simulation results are given to illustrate the effectiveness of the approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号