首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct numerical simulation data for the lateral velocity derivative u/y at the centreline of a fully developed turbulent channel flow provide reasonable support for Wyngaard's analysis of the error involved in measuring this quantity using parallel hot wires. Numerical data in the wall region of the channel flow also provide a useful indication of how to select the separation between the wires. Justification for this choice is obtained by comparing several measured statistics of u/y with the corresponding numerical data.  相似文献   

2.
We investigate the effect of the hot wire resolution on the measurement of the velocity derivative skewness in homogeneous isotropic turbulence. Single- and cross-wire configurations (with different lengths and separations of the wires, and temporal sampling resolution) are considered. Predictions of the attenuation on the basis of a model for the energy spectrum are compared to experimental and numerical data in grid and box turbulence, respectively. It is shown that the model-based correction is accurate for the single wire but not for the cross-wire. In the latter case, the effect of the separation between the wires is opposite to that found in the experiments and simulations. Moreover, the attenuation predicted by the numerical data is in good agreement with that observed in the experiment. For both probe configurations, the sampling resolution has a sizeable attenuation effect, but, for the X-probe, the impact of the separation between the wires is more important. In both cases, the length of the wires has only a minor effect, in the non-dimensional range of wire length investigated. Finally, the present experimental data support the conclusion that the skewness is constant with the Reynolds number, in agreement with Kolmogorov’s 41 theory.
Paolo BurattiniEmail:
  相似文献   

3.
Two-point correlation measurements of the wall normal fluctuating velocities were made in two-dimensional (2-D) and pressure-driven three-dimensional (3-D) turbulent boundary layers. These data are needed for characterization and modeling of active-motion length scales, especially for 3-D flows. The fine-probe-volume data were measured using two custom-designed laser-Doppler-velocimeter fiber-optic probes. The data are relatively free of noise, signal broadening, and bias effects. Favorable comparisons with direct-numerical-simulation (DNS) results in the near-wall region of the 2-D flow validate the experimental techniques used here. For a given fixed probe location, non-dimensional correlation values scale best on the probe separation. For both the 2-D and 3-D cases, peak correlations lie along a line inclined away from the wall at 11° and 8°, respectively, which suggests the existence of an outgoing characteristic line affected by only the upstream flow. The decay of the correlation coefficient occurs nearer the wall than away from the wall relative to the fixed probe location. The variations for the 3-D flow correlations are similar to the 2-D variations, but with longer Δ x +and Δ y + decay distances, probably because of the 3-D flowacceleration. While the spanwise variation of the correlationcoefficients is symmetric about the fixed point for the 2-D case asdictated by reciprocity, the 3-D case shows a large asymmetry for spanwise variations Δ z + < 68. The profiles at higher Δ z + are more symmetric. In general, at a given y the maximum correlation is skewed toa non-zero Δ z. It appears that the skewing of the correlation coefficient in the z direction tracks the sign of . This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Three-component, coincident, time-resolved velocity measurements were obtained in the near wall region, y + < 100, of a fully developed turbulent pipe flow. The measurements were conducted in the ARL/PSU glycerin tunnel at a Reynolds number (Re h), based on pipe radius and centerline velocity, of 6436 and an Re of approximately 730. The reported data include velocity statistics up to fourth order, Reynolds stresses and three component, coincident turbulent velocity spectral estimates. The current data are generally in quite good agreement with the fully developed channel flow direct numerical simulation (DNS) results of Antonia et al. (1992) at Re 700 - 700. The accuracy of the current experimental data and the very good agreement with the DNS results provides evidence for the accuracy of the DNS solutions and thus Antonia's conclusions of very near wall, y + < 20, Re dependence on turbulent velocity statistics. The very good agreement between the low Re rectangular channel flow DNS results and the low Re flat plate turbulent boundary layer statistics of Karlsson and Johansson (1988) suggests that for y + < 30 statistics of similar flows of differing geometry may be compared on the basis of equal Re . The current data are available on disk or by anonymous ftp by the first author.  相似文献   

5.
Different near-wall scalings are reviewed by the use of data from direct numerical simulations (DNS) of attached and separated adverse pressure gradient turbulent boundary layers. The turbulent boundary layer equation is analysed in order to extend the validity of existing wall damping functions to turbulent boundary layers under severe adverse pressure gradients. A proposed near-wall scaling is based on local quantities and the wall distance, which makes it applicable for general computational fluid dynamics (CFD) methods. It was found to have a similar behaviour as the pressure-gradient corrected analytical y* scaling and avoids the inconsistencies present in the y+ scaling. The performance of the model is illustrated by model computations using explicit algebraic Reynolds stress models with near-wall damping based on different scalings.  相似文献   

6.
The structure of the Reynolds stress in the near-wall region of a fully developed turbulent pipe flow, at a pipe Reynolds number of 8,923, was investigated. Because the closed circuit tunnel used glycerine as a working fluid, measurements could be readily made inside the viscous sublayer. Two laser Doppler velocimeter (LDV) systems were combined to measure the two point spatial correlation, R 12, between the stream wise and radial velocities in a radial plane of the pipe. The correlation measurements extended over the region from y + of 2 to 64 in the direction normal to the pipe wall and covered more than 800 wall units in the streamwise direction. Two-dimensional maps of the correlation coefficient were established for six different distances of the streamwise velocity probe from the wall. The use of LDV systems allowed the measurements to be made for small spatial separations of the probes without fear of probe interference effects. A characteristic feature of the correlation contour maps, that maxium correlation arises for small non-zero separation of the probes, may not have been observed had invasive techniques been employed.  相似文献   

7.
Turbulent boundary layer measurements of the rms spanwise vorticity tz with a four hot-wire probe are in reasonable agreement with direct numerical simulations and other published measurements at comparable Reynolds numbers. It is shown that a reasonable accurate approximation for z can be obtained with only two parallel hot wires.  相似文献   

8.
The steady state flow and heat transfer characteristics of the combined natural and forced convection in a two dimensional, laminar, incompressible wall jet over a vertical wall are obtained for constant wall heat flux boundary condition. The velocity and temperature distribution are assumed to be power series, where the zeroth term corresponds to that for a plane wall jet in the absence of buoyancy effects. Numerical results for the momentum and thermal series functions are presented for a Prandtl number of 0.73. Wall values of the momentum and thermal series functions are presented for Prandtl numbers ranging from 0.01 to 1000.Nomenclature Gr* modified Grashof number - k thermal conductivity - Nu Nusselt number - Pr Prandtl number - q w heat flux at the wall - Re Reynolds number - T temperature - u velocity component in x-direction - v velocity component in y-direction - x co-ordinate along the plane wall - y co-ordinate normal to the wall - () gamma function - non-dimensional co-ordinate defined in (6) - non-dimensional temperature - dynamic viscosity - kinematic viscosity - non-dimensional co-ordinate defined in (6) - density - w values at the wall - values at large distances away from the wall  相似文献   

9.
The steady state heat transfer characteristics of the wall jet over a curved surface are obtained for constant wall temperature and constant wall heat flux boundary conditions. Both concave and convex curvatures have been considered. Numerical results for the temperature distribution are obtained and solutions for the wall values of the temperature functions have been tabulated for Prandtl number ranging from 0.01 to 100 while the curvature parameter was varied from –0.03 to 0.07.Nomenclature f velocity profile function - h heat transfer coefficient - K thermal conductivity - Nu Nusselt number - Pr Prandtl number - q w heat flux at the wall - Re Reynolds number - R 0 surface radius of curvature - T temperature - U characteristic velocity - u velocity component in x direction - v velocity component in y direction - x distance parallel to the surface - y distance normal to the surface - curvature parameter - dimensionless coordinate - dimensionless temperature - dynamic viscosity - kinematic viscosity - fluid density - shear stress - w conditions at the wall - conditions far away from the surface  相似文献   

10.
A swept-beam, two-color particle-imaging velocimetry (PIV) technique has been developed which utilizes a single argon-ion laser for illuminating the seed particles in a flowfield. In previous two-color PIV techniques two pulsed lasers were employed as the different-color light sources. In the present experiment the particles in a two-dimensional shear-layer flow were illuminated using arotating mirror to sweep the 488.0-nm (blue) and 514·5-nm (green) lines of the argon-ion laser through a test section. The blue- and greenparticle positions were recorded on color film with a 35-mm camera. The unique color coding eliminates the directional ambiguities associated with single-color techniques because the order in which the particle images are produced is known. Analysis of these two-color PIV images involved digitizing the exposed film to obtain the blue and green-particle image fields and processing the digitized images with velocity-displacement software. Argon-ion lasers are available in many laboratories; with the addition of a rotating mirror and a few optical components, it is possible to conduct flow-visualization experiments and make quantitative velocity measurements in many flow facilities.List of symbols d length of displacement vector - d m distance between rotating mirror and concave mirror - n f number of facets on rotating mirror - R seed-particle radius - v velocity in x, y plane - v s sweep velocity of laser beams, assumed to be in y direction from top to bottom of field of view - v x, v y, v z x, y, and z components of velocity - x 1, y 1 color-1 particle coordinates - x 2, y 2 color-2 particle coordinates - y max y dimension of field of view, assumed to be the long dimension - s spatial separation of beams as they approach rotating mirror - t time separation of laser sheets or of swept beams passing fixed point - t b time between successive sweeps through test section by same beam - t s time required for both beams to sweep through test section - angular separation of beams reflecting from rotating mirror - fluid viscosity - v angular velocity of rotating mirror in cycles per second - seed-particle density - seed-particle response time - v, d, t standard deviation of velocity, displacement, and time - vorticity This work was supported, in part, by the Aero Propulsion and Power Directorate of Wright Laboratory under Contract No. F33615-90-C-2033.  相似文献   

11.
In the present paper approximate solutions for the fluid and thermal boundary layers in an incompressible laminar plane wall jet with isothermal and adiabatic walls have been studied respectively, and comparisons with the known exact solutions have been made wherever possible. It is found that the present method is simple and straightforward, and gives results being in good agreement with the exact solutions. For moderate values of the Prandtl number the method may be used for calculating the heat transfer from an isothermal wall and temperature recovery factor for an adiabatic wall respectively.Nomenclature a* dimensionless temperature gradient at the wall - c p specific heat at constant pressure - K momentum flux through a cross-section of the jet - Q volume flux through a cross-section of the jet - r* temperature recovery factor - T temperature of the fluid in the boundary layer - T r adiabatic wall temperature - T temperature of the fluid at rest - u, v velocity components along and normal to the plane wall respectively - x, y rectangular coordinates along and normal to the plane wall respectively - z Greek symbols fluid boundary layer thickness - t, T thermal boundary layer thickness for an isothermal and an adiabatic wall respectively - dimensionless y-coordinate - dimensionless temperature difference (T–T )/T - coefficient of thermal conductivity - coefficient of viscosity - coefficient of kinematic viscosity - Prandtl number - w shearing stress on the plane wall  相似文献   

12.
When the flow behaviour of fluids is investigated with capillary-or rotational rheometers, adhesion of the fluid to the wall is normally one of the boundary conditions. For many fluids, especially for suspensions, this assumption is not valid. These fluids tend to slip at the wall. Therefore the normal evaluation of rheometer measurements leads to apparent but not compatible flow functions. The flow behaviour of these fluids can be characterized with two material functions which describe separately slipping in the boundary layer and shearing within the fluid. Only if both functions are known, correct predictions of flow processes are possible. A simple equipment to separate the shear function and the slip function is described.List of symbols Y* apparent shear rate - Y w * apparent wall shear rate - Yw wall shear rate corrected with Rabinowitsch and Weissenberg correction - Ys reduced shear rate (slip corrected) - Yws reduced wall shear rate (slip corrected) - * (r) velocity distribution in a capillary - G slip velocity (at the wall) - * (r) velocity distribution in a capillary (without slip) - shear stress - w wall shear stress - VS total volume rate - VG shear volume rate - VG slip volume rate - p 1 pressure in the reservoir channel of the capillary rheometer - p 0 athmospheric pressure - L capillary length - R capillary radius  相似文献   

13.
Outer layer similarity in fully rough turbulent boundary layers   总被引:1,自引:0,他引:1  
Turbulent boundary layer measurements were made on a flat plate covered with uniform spheres and also on the same surface with the addition of a finer-scale grit roughness. The measurements were carried out in a closed return water tunnel, over a momentum thickness Reynolds number (Re) range of 3,000–15,000, using a two-component, laser Doppler velocimeter (LDV). The results show that the mean profiles for all the surfaces collapse well in velocity defect form. Using the maximum peak to trough height (Rt) as the roughness length scale (k), the roughness functions (U+) for both surfaces collapse, indicating that roughness texture has no effect on U+. The Reynolds stresses for the two rough surfaces also show good agreement throughout the entire boundary layer and collapse with smooth wall results outside of the roughness sublayer. Quadrant analysis and the velocity triple products show changes in the rough wall boundary layers that are confined to y<8ks, where ks is the equivalent sand roughness height. The present results provide support for Townsends wall similarity hypothesis for uniform three-dimensional roughness. However, departures from wall similarity may be observed for rough surfaces where 5ks is large compared to the thickness of the inner layer.  相似文献   

14.
The mass transport is determined in a two-dimensional channel due to pure shear-Couette flow. Local concentration, mean concentration and flux at the walls of the conduit are determined analytically for arbitrary wall velocity ratios. The special case of a fixed lower wall and a moving upper wall of the channel has been numerically evaluated. In addition the case of linear homogeneous chemical reaction has been treated for shear flow of the liquid in the conduit.
Stofftransport bei Couette-Strömung im Kanal
Zusammenfassung Es wird der Stofftransport in einem Kanal mit reiner Scher-Couette-Strömung analytisch bestimmt. Dabei wird die lokale Konzentration, die mittlere Konzentration, sowie der Konzentrationsflu\ über die WÄnde bei beliebigem GeschwindigkeitsverhÄltnis der WÄnde bestimmt. Die numerische Auswertung der analytischen Ergebnisse beschrÄnkte sich auf den Fall des Stofftransportes in einem Kanal, dessen untere Wand sich in Ruhe befindet, wÄhrend die obere Wand sich mit konstanter Geschwindigkeit bewegt. Es wird au\erdem die Konzentration bei linearer homogener chemischer Reaktion bei Scherströmung angegeben.

Nomenclature c concentration - c w wall concentration aty=0,h - c i initial concentration atx = 0 - ¯ c (x) mean concentration - D diffusion coefficient - h width of the channel - k * homogeneous chemical reaction coefficient - u 1 velocity of lower channel wally=0 - u 2 velocity of upper channel wally=h - x axial coordinate - y coordinate perpendicular to channel (y *=y/h) - n, n Eigenvalues - J ±1/3 Besselfunction of ±1/3 order  相似文献   

15.
Pulsed-wire velocity measurements have been made in the near-wall layer, including the viscous sublayer, beneath a separated flow. A method for correcting the error caused by fluctuations in velocity gradient is given, extending the work of Schober et al. (1998). The measurements show that the r.m.s. of the streamwise velocity fluctuations scale closely in accordance with an inner-layer scaling, where the velocity scale, , is based on the r.m.s. of the wall shear stress fluctuations (measured by means of a pulsed-wire shear stress probe), rather than the mean wall shear stress. The effects of velocity gradient are only significant beneath of 10 or less.List of symbols C Calibration constant - f Function representing mean velocity - hf Height of fence above splitter plate surface - L Length scale of outer-layer structures - s Distance between pulsed and sensor wires - u r.m.s. of U - Velocity scale based on r.m.s of wall shear stress fluctuation - U Instantaneous velocity in x-direction - Um Instantaneous measured velocity in x-direction - Ur Free-stream reference velocity - x Streamwise direction from separation point - y Distance from splitter plate surface, in normal direction - Xr Length of separation bubble - 0 Thickness scale in oscillating layer - Blasius laminar boundary layer parameter - Density - Wall shear stress - r.m.s. of wall shear stress fluctuation - Frequency of oscillating layer - Kinematic viscosity - Overbar denotes time average  相似文献   

16.
An experimental investigation was made of a two dimensional flow formed by the interaction of two asymmetric turbulent curved wall jets past a circular cylinder. Measurements were made of velocity and turbulence intensity profiles of the two curved wall jets before the interaction, and those of the merged jet after the interaction. The location of the interaction region of the two opposing curved wall jets and the flow direction of the merged jet were found to depend primarily on the ratio of initial momentum fluxes. The velocity and turbulence intensity profiles of the merged jet were similar to those of the plane turbulent jet. However, the growth rate of the merged jet was approximately 1.5 times larger than that of the plane jet. The influence of the momentum flux ratio on the growth rate appeared to be insignificant.List of symbols C f friction coefficient - h slot height - J p, J c initial momentum flux of a power jet and of a control jet, respectively - P, Pa wall static and atmospheric pressure, respectively - Re Reynolds number based on slot height - Re m local Reynolds number U m y m /v - U local mean velocity - U c velocity along the center line of the merged jet - U m local maximum velocity of the curved wall jet - u r.m.s. value of velocity fluctuations - u u friction velocity - U + U/ut - x distance along the cylinder surface - x distance along the center line of the merged jet - y 1/2, y 1/2 position of y and y where U = U m /2 and U = U c /2, respectively - y + yu t/V - deflection angle of the merged jet (Fig. 4) - interaction angle (Fig. 4) - merged jet angle (Fig. 4) - angle measured from the center line of the cylinder (Fig. 4) - interception angle (Fig. 8) - , normalized coordinates, y/y 1/2 and y/y 1/2, respectively  相似文献   

17.
An investigation of the flow over a three-dimensional (3-D) double backward-facing step is presented using a combination of both quantitative measurements from a particle image velocimetry (PIV) system and qualitative oil-flow visualizations. The arrangement of the PIV instrument allows for snap-shots of the (x, y) and (y, z) planes at various axial and spanwise positions. The measurements illustrate characteristics that are found in both two-dimensional (2-D) backward-facing steps and 3-D flows around wall mounted cubes. In particular, the development of a horseshoe vortex is found after each step alongside other vortical motions introduced by the geometry of the model. Large turbulence levels are found to be confined to a region in the center of the backstep; their mean square levels being much larger than what has been observed in 2-D backward-facing steps. The large turbulent fluctuations are attributed to a quasi-periodic shedding of the horseshoe vortex as it continuously draws energy from the spiral nodes of separation, which form to create the base of the horseshoe vortex. A combination of effects including the shedding of the first horseshoe vortex, the horizontal entrainment of air and the presence of two counter rotating vortices initiated at reattachment, are shown to cause the steering vector of the flow to jettison away from the surface in the first redeveloping region and along the center at z/h = 0. Oil-flow visualizations confirm these observations.
C. E. Tinney (Corresponding author)Email:
L. S. UkeileyEmail:
  相似文献   

18.
A local suppression in the generation of near wall Reynolds stress is achieved by modifying the buffer region and sublayer (y + <30) of a turbulent pipe flow with a 16.4 wall unit high wall mounted protrusion. Multi-component, multi-point, time resolved laser Doppler velocimetry measurements are made in the undisturbed and modified ARL/PSU glycerin tunnel pipe flow at a Reynolds number of approximately 10000. A downstream converging flow field is produced by the divergence of the approaching mean flow around the protrusion. A pair of counter-rotating vortices, 15 wall units in diameter with common flow down, are generated by the protrusion and also contribute to the wall directed flow convergence. The convergence region is 15 wall units high and more than 100 wall units long and appears to decouple the near wall region from the outer turbulent wall layer. Locally, turbulent velocity fluctuations in the form of Reynolds stress producing events, sweeps and ejections, are retarded within this region. This results in a reduction in near wall uv Reynolds stress and local wall shear. Interestingly, the counter-rotating vortices act to increase turbulent diffusion in a manner which is uncorrelated with Reynolds stress generation.  相似文献   

19.
The Kárman-Pohlhausen integral procedure was exploited to solve the problem of free convection from a vertical heated surface imbedded in a thermally stratified porous medium. Upon considering the Darcy law, the energy integral relation, and the auxiliary relation associated with the curvature of the temperature profile at the wall, a closed-form expression for the Nusselt number was reduced for the case where the distributions of the wall temperature and ambient temperature vary according to power-functions of distance. Results on an isothermal plate are found to be in close agreement with those from the exact solution. Effects of the thermal stratification on local heat transfer rates are also discussed.
Freie Konvektion von einer beheizten, vertikalen Fläche in der thermischen Schichtung eines porösen Mediums
Zusammenfassung Die Kárman-Pohlhausen-Integration wurde angewandt, um das Problem der freien Konvektion von einer vertikalen Fläche, die in ein thermisch geschichtetes poröses Medium eingebettet ist, zu lösen. Unter Hinzuziehung des Darcyschen Gesetzes der integralen Energiebeziehung und einer Hilfsbeziehung, die mit der Krümmung des Temperaturprofiles an der Wand zusammenhing, wurde eine geschlossene Form für die Nusselt-Zahl gefunden, jeweils bezogen auf den Fall, wenn die Verteilung der Wandtemperatur und der Umgebungstemperatur entsprechend eines Exponentialansatzes mit dem Abstand abnimmt. Ergebnisse, die für eine isotherme Platte mit dieser Methode berechnet wurden, sind in guter Übereinstimmung mit denen der exakten Lösung. Es werden auch Einflüsse der thermischen Schichtung auf den örtlichen Wärmeübergang diskutiert.

Nomenclature A, B, C, D shape factors - f profile function - g acceleration due to gravity - K permeability - m parameter associated with thermal stratification - n power-law exponent of the wall temperature - Nux local Nusselt number - Pr Prandtl number - Rax local Rayleigh number - T temperature - u, v velocity components inx andy directions - x, y boundary layer coordinates Greek symbols shape parameter - \ coefficient of thermal expansion - boundary layer thickness - similarity variable  相似文献   

20.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号