首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 55 毫秒
1.
The problem of propagation of a Lamb elastic wave in a thin plate is considered using the Cosserat continuum model. The deformed state is characterized by independent displacement and rotation vectors. Solutions of the equations of motion are sought in the form of wave packets specified by a Fourier spectrum of an arbitrary shape for three components of the displacement vector and three components of the rotation vector which depend on time, depth, and the longitudinal coordinate. The initial system of equations is split into two systems, one of which describes a Lamb wave and the second corresponds to a transverse wave whose amplitude depends on depth. Analytical solutions in displacements are obtained for the waves of both types. Unlike the solution for Lamb waves, the solution obtained for the transverse wave has no analogs in classical elasticity theory. The solution for the transverse wave is compared with the solution for the Lamb wave. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 143–150, January–February, 2007. An erratum to this article is available at .  相似文献   

2.
In this paper, we investigate the propagation characteristics of elastic guided waves in FGM spherical shells with exponentially graded material in the radial direction. A new separation of variables technique to displacements is proposed to convert the governing equations of the wave motion to the second-order ordinary differential equations with variable coefficients. By further a variables transform technique, these equations are transformed to the Whittaker equations so that analytic solutions can be obtained. For the spherical shell case, by satisfying the traction-free boundary conditions on both the inner and outer surfaces of the shell, we obtain the dispersion equations, which show that both the SH and Lamb-type wave modes are generated in the structure. The calculated dispersion curves in the functionally graded shell demonstrate a clear influence of the gradient coefficient as compared to those of the homogeneous shell, with the Lamb-type waves more sensitive to the gradient coefficient. The mode shapes and the distributions of stresses in the shells for various gradient coefficients are also presented to illustrate their dependence on the gradient coefficient.  相似文献   

3.
An analytical approach is proposed to study the postbuckling of circular cylindrical shells subject to axial compression and lateral pressure made of functionally graded graphene platelet-reinforced polymer composite(FG-GPL-RPC). The governing equations are obtained in the context of the classical Donnell shell theory by the von K′arm′an nonlinear relations. Then, based on the Ritz energy method, an analytical solution approach is used to trace the nonlinear postbuckling path of the shell. The effects of several parameters such as the weight fraction of the graphene platelet(GPL),the geometrical properties, and distribution patterns of the GPL on the postbuckling characteristics of the FG-GPL-RPC shell are analyzed.  相似文献   

4.
分析了三维Cosserat连续体理论中的应力应变特征,推导了三维Cosserat连续体的有限元方程,基于ABAQUS计算软件提供的用户单元子程序(UEL)接口编写了弹性Cosserat连续体三维20节点有限元程序,并分析了微悬臂梁自由端的挠度问题和微杆扭转问题。通过与基于经典连续体理论的解析解及有限元数值计算结果进行比较,表明所发展的三维Cosserat连续体有限元能有效地模拟微结构尺寸相关效应问题,即随着微结构尺寸与材料内部长度参数的接近,基于Cosserat连续体有限元分析得到的微梁的挠度以及微杆的转角与经典连续体的解析解及有限元解相比越来越小;反之,Cosserat连续体有限元的计算结果与经典连续体的解析解及有限元数值解较为一致。  相似文献   

5.
6.
Displacement fluctuation is the difference between the real displacement and the affine displacement in deforming granular materials. The discrete element method(DEM) is widely used along with experimental approaches to investigate whether the displacement fluctuation represents the vortex structure. Current research suggests that the vortex structure is caused by the cooperative motion of particle groups on meso-scales, which results in strain localization in granular materials. In this brief article, we investigate the vortex structure using the finite element method(FEM) based on the Cosserat continuum model. The numerical example focuses on the relationship between the vortex structure and the shear bands under two conditions:(a) uniform granular materials;(b) granular materials with inclusions. When compared with distributions of the effective strain and the vortex structure, we find that the vortex structure coexists with the strain localization and originates from the stiffness cooperation of different locations in granular materials at the macro level.  相似文献   

7.
Brownian coagulation is the most important inter-particle mechanism affecting the size distribution of aerosols.Analytical solutions to the governing population balance equation(PBE) remain a challenging issue.In this work,we develop an analytical model to solve the PBE under Brownian coagulation based on the Taylor-expansion method of moments.The proposed model has a clear advantage over conventional asymptotic models in both precision and efficiency.We first analyze the geometric standard deviation(GSD) of aerosol size distribution.The new model is then implemented to determine two analytic solutions,one with a varying GSD and the other with a constant GSD.The varying solution traces the evolution of the size distribution,whereas the constant case admits a decoupled solution for the zero and second moments.Both solutions are confirmed to have the same precision as the highly reliable numerical model,implemented by the fourth-order Runge-Kutta algorithm,and the analytic model requires significantly less computational time than the numerical approach.Our results suggest that the proposed model has great potential to replace the existing numerical model,and is thus recommended for the study of physical aerosol characteristics,especially for rapid predictions of haze formation and evolution.  相似文献   

8.
Brownian coagulation is the most important inter-particle mechanism affecting the size distribution of aerosols. Analytical solutions to the governing population balance equation (PBE) remain a challenging issue. In this work, we develop an analytical model to solve the PBE under Brownian coagulation based on the Taylor-expansion method of moments. The proposed model has a clear advantage over conventional asymptotic models in both precision and efficiency. We first analyze the geometric standard deviation (GSD) of aerosol size distribution. The new model is then implemented to determine two analytic solutions, one with a varying GSD and the other with a constant GSD. The varying solution traces the evolution of the size distribution, whereas the constant case admits a decoupled solution for the zero and second moments. Both solutions are confirmed to have the same precision as the highly reliable numerical model, implemented by the fourth-order Runge–Kutta algorithm, and the analytic model requires significantly less computational time than the numerical approach. Our results suggest that the proposed model has great potential to replace the existing numerical model, and is thus recommended for the study of physical aerosol characteristics, especially for rapid predictions of haze formation and evolution.  相似文献   

9.
A study is made of waves in a Cosserat continuum, whose strain state is characterized by independent displacement and rotation vectors. The propagation of longitudinal and transverse bulk waves is considered. Wave solutions are sought in the form of wave trains specified by a Fourier spectrum of arbitrary shape. It is shown that if the solution is sought in the form of three components of the displacement vector and three components of the rotation vector which depend on time and the longitudinal coordinate, the initial system is split into two systems, one of which describes longitudinal waves, and the other transverse waves. For waves of both types, dispersion relations and analytical solutions in displacement are obtained. The dispersion characteristics of the solutions obtained differ from the dispersion characteristics of the corresponding classical elastic solutions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 2, pp. 196–203, March–April, 2008.  相似文献   

10.
We develop an elastodynamic theory to predict the diffuse scattered field of elastic waves by randomly rough surfaces, for the first time, with the aid of the Kirchhoff approximation (KA). Analytical expressions are derived incorporating surface statistics, to represent the expectation of the angular distribution of the diffuse intensity for different modes. The analytical solutions are successfully verified with numerical Monte Carlo simulations, and also validated by comparison with experiments. We then apply the theory to quantitatively investigate the effects of the roughness and the shear-to-compressional wave speed ratio on the mode conversion and the scattering intensity, from low to high roughness within the valid region of KA. Both the direct and the mode converted intensities are significantly affected by the roughness, which leads to distinct scattering patterns for different wave modes. The mode conversion effect is very strong around the specular angle and it is found to increase as the surface appears to be more rough. In addition, the 3D roughness induced coupling between the out-of-plane shear horizontal (SH) mode and the in-plane modes is studied. The intensity of the SH mode is shown to be very sensitive to the out-of-plane correlation length, being influenced more by this than by the RMS value of the roughness. However, it is found that the depolarization pattern for the diffuse field is independent of the actual value of the roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号