首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
单峰接触研究及其在分形表面接触中的应用   总被引:2,自引:1,他引:1  
基于有限元方法,建立了弹塑性单峰的接触模型.粗糙峰为理想的弹塑性材料,为了考虑不同的材料特性对微凸体变形的影响,分别对9种不同的材料进行了分析.根据有限元计算结果,分析了接触面积,平均接触压力和接触力与变形干涉量之间的关系,并进行了经验公式的拟合.单峰接触所经历的4个不同的阶段,以及不同阶段之间的转化点均作了明确的表达.然后,根据分形理论,将单峰接触模型扩展到了三维的粗糙表面的接触,并提出了一个计算接触表面法向刚度的模型.通过与实验数据和以往模型的结果对比,证明本文中所提出的模型具有较高的精度.  相似文献   

2.
A generalized adhesive wear analysis that takes into account the effect of interfacial adhesion on the total load was developed for three-dimensional fractal surfaces in normal contact. A wear criterion based on the critical contact area for fully-plastic deformation of the asperity contacts was used to model the removal of material from the contact interface. The fraction of fully-plastic asperity contacts, wear rate, and wear coefficient are expressed in terms of the total normal load (global interference), fractal (topography) parameters, elastic–plastic material properties, surface energy, material compatibility, and interfacial adhesion characteristics controlled by the environment of the interacting surfaces. Numerical results are presented for representative ceramic–ceramic, ceramic–metallic, and metal–metal contact systems to illustrate the dependence of asperity plastic deformation, wear rate, and wear coefficient on global interference, surface roughness, material properties, and work of adhesion (affected by the material compatibility and the environment of the contacting surfaces). The analysis yields insight into the effects of surface material properties and interfacial adhesion on the adhesive wear of rough surfaces in normal contact.  相似文献   

3.
This work presents the results of a finite element analysis (FEA) used to simulate two-dimensional (2D) sliding between two interfering elasto-plastic cylinders. The material for the cylinders is modeled as elastic-perfectly plastic and follows the von Mises yield criterion. The FEA provides trends in the deformations, reaction forces, stresses, and net energy losses as a function of the interference and sliding distance between the cylinders. Results are presented for both frictionless and frictional sliding and comparisons are drawn. The effects of plasticity and friction on energy loss during sliding are isolated. This work also presents empirical equations thatt relate the net energy loss due to sliding under an elasto-plastic deformation as a function of the sliding distance. Contour plots of the von Mises stresses are presented to show the formation and distribution of stresses with increasing plastic deformation as sliding progresses. This work shows that for the plastic loading cases the ratio of the horizontal force to the vertical reaction force is non-zero at the point where the cylinders are perfectly aligned about the vertical axis. In addition, a “load ratio” of the horizontal tugging force to the vertical reaction force is defined. Although this is analogous to the common definition of the coefficient of friction between sliding surfaces, it just contains the effect of energy loss in plasticity. The values of the contact half-width are obtained for different vertical interferences as sliding progresses.  相似文献   

4.
A new nonlinear force model based on experimental data is proposed to replace the classical Hertzian contact model to solve the fractional index nonlinearity in a ball bearing system. Firstly, the radial force and the radial deformation are measured by statics experiments, and the data are fitted respectively by using the Hertzian contact model and the cubic polynomial model. Then, the two models are compared with the approximation formula appearing in Aeroengine Design Manual. In consequence, the two models are equivalent in an allowable deformation range. After that, the relationship of contact force and contact deformation for single rolling element between the races is calculated based on statics equilibrium to obtain the two kinds of nonlinear dynamic models in a rigid-rotor ball bearing system. Finally, the displacement response and frequency spectrum for the two system models are compared quantitatively at different rotational speeds, and then the structures of frequency-amplitude curves over a wide speed range are compared qualitatively under different levels of radial clearance, amplitude of excitation, and mass of supporting rotor. The results demonstrate that the cubic polynomial model can take place of the Hertzian contact model in a range of deformation.  相似文献   

5.
In machine dynamics impacts are usually common phenomena, resulting from collisions of moving bodies. Even low velocity impacts might produce high stresses in the contact region, which result in inelastic deformation. Thereby, visco-plastic materials, such as steel, show a significant increase of the yield stress with the strain rate. In machine dynamics repeated collisions occur, resulting in repeated impacts on a previously deformed contact area. Then, inelastic deformation and the resulting residual stresses produced by previous impacts have an influence on the behavior of the following impacts. Thus, the impact behavior varies with the number of impacts. This paper presents a numerical and experimental evaluation of repeated impacts with identical impact velocity up to 3 m/s, whereby the deformation history of the contact area, due to previous impacts, is included. The approach is applied to longitudinal impacts of an elastic steel sphere on a steel rod with distinct visco-plastic material behavior which is identified by Split Hopkinson Pressure Bar tests. A Finite Element analysis and experimental verification using two Laser-Doppler-Vibrometers are performed. It is shown that for an accurate impact simulation the FE model must include the visco-plastic material behavior of the steel. Further it is found that the maximal contact force, the rebound velocity and the coefficient of restitution increase with the number of impacts, while the contact duration decreases with the number of impacts. After several impacts these quantities show saturation to a constant value, indicating no significant additional inelastic deformation in the later impacts. Further, the residual stress distribution, the maximal von Mises stress distribution and the local deformation at the contact point are evaluated and a characteristic force-deformation diagram is obtained. Finally, an analysis is performed to describe the relation between maximal force and remaining crater at the contact point.  相似文献   

6.
In this work, structural finite element analyses of particles moving and interacting within high speed compressible flow are directly coupled to computational fluid dynamics and heat transfer analyses to provide more detailed and improved simulations of particle laden flow under these operating conditions. For a given solid material model, stresses and displacements throughout the solid body are determined with the particle–particle contact following an element to element local spring force model and local fluid induced forces directly calculated from the finite volume flow solution. Plasticity and particle deformation common in such a flow regime can be incorporated in a more rigorous manner than typical discrete element models where structural conditions are not directly modeled. Using the developed techniques, simulations of normal collisions between two 1 mm radius particles with initial particle velocities of 50–150 m/s are conducted with different levels of pressure driven gas flow moving normal to the initial particle motion for elastic and elastic–plastic with strain hardening based solid material models. In this manner, the relationships between the collision velocity, the material behavior models, and the fluid flow and the particle motion and deformation can be investigated. The elastic–plastic material behavior results in post collision velocities 16–50% of their pre-collision values while the elastic-based particle collisions nearly regained their initial velocity upon rebound. The elastic–plastic material models produce contact forces less than half of those for elastic collisions, longer contact times, and greater particle deformation. Fluid flow forces affect the particle motion even at high collision speeds regardless of the solid material behavior model. With the elastic models, the collision force varied little with the strength of the gas flow driver. For the elastic–plastic models, the larger particle deformation and the resulting increasingly asymmetric loading lead to growing differences in the collision force magnitudes and directions as the gas flow strength increased. The coupled finite volume flow and finite element structural analyses provide a capability to capture the interdependencies between the interaction of the particles, the particle deformation, the fluid flow and the particle motion.  相似文献   

7.
研究了含黏弹性夹芯的功能梯度石墨烯增强复合材料(functionally graded graphene reinforced composite, FG-GRC)后屈曲梁在低速跌落冲击下的跳跃振荡行为.采用修正Halpin-Tsai细观模型预测FG-GRC的材料宏观属性.使用赫兹点接触模型确定冲击器和梁之间的接触力.提出了考虑轴向预应力的复合材料层本构关系和阻尼层的Kelvin型黏弹性本构.通过一种广义高阶剪切变形锯齿梁模型建立夹芯梁的非线性位移场. 基于Hamilton 能量变分原理, 推导了动力学控制方程组. 通过两步分析,首先获得弹性后屈曲平衡路径作为冲击问题的初始状态. 随后, 结合四阶龙格库塔法,拓展了两步摄动-伽辽金法计算接触力的时程曲线以及后屈曲梁的位移时程曲线.研究了后屈曲梁在单次和两次撞击下双稳态大幅振荡过程的动力学特征.讨论了轴向载荷、冲击速度、黏弹性阻尼特性、冲击器材料等因素对于碰撞接触力以及后屈曲梁动力响应的影响规律.结果表明, 接触力仅对冲击速度较为敏感,一定的结构碰撞参数设计可以在接触力变化不大的情况下,使得后屈曲梁由单势能阱运动转变为双阱大幅振荡.   相似文献   

8.
The study is motivated by the need to develop highly sensitive tactile sensors for both robotic and bionic applications. The ability to predict the response of an elastomeric layer under severe pressure conditions is key to the development of highly sensitive capacitive tactile sensors capable of detecting the location and magnitude of applied forces over a broad range of contact severity and layer depression. Thus, in this work, a large deformation Mooney–Rivlin material model is employed in establishing the non-linear mechanics of an elastomeric layer of finite thickness, subjected to uniform displacement of controlled compression. Thus, an analytical non-linear model for the above described problem which is validated numerically via the method of finite elements is developed. Two dimensional, plane strain conditions of an infinitely long and of finite thickness elastomeric layer are assumed. The layer is subjected to a uniform vertical large displacement with symmetry conditions applied at the contact center. Cauchy normal and shear stress profiles as well as displacement profiles are established over a broad range of a layer compression including up to 40% of layer thinning. The model allows for the determination of the non-linear relationship between the relative separation of embedded conducting electrodes and thus the sensor capacitance during touch, to the force magnitude of the force concentrated at the symmetry plane or sensor center. The current model is expected to further improve the sensitivity and range of polymeric tactile sensors currently under development (Charalambides and Bergbreiter, 2013) [1]. As shown elsewhere (Kalayeh et al., 2015) [2], capacitance–force model predictions are found to be in remarkable agreement with experimental measurements for a broad family of self-similar pressure sensors.  相似文献   

9.
Model of contact between rollers and sprockets in chain-drive systems   总被引:3,自引:0,他引:3  
A model of a roller-chain drive is developed and applied to the simulation and analysis of roller-chain drives of large marine diesel engines. Two different ways of modelling the contact between the rollers and sprockets are presented; one using a circular shaped tooth profile and the other using the shape of a real tooth profile. The main components of the roller-chain drive model include the sprockets with different sizes and the chain made of rollers and links, which are represented by rigid bodies, mass particles and spring-damper assemblies, respectively. The contact between the rollers and the sprockets are represented by a continuous contact force. The models proposed effectively represent the polygonal effect always present in this type of drive. The numerical results from the simulations are compared with analytical results, for simplified models. The model with a real tooth profile proves superior to the model with a circular tooth profile.The applications represent the ongoing work that resulted from many fruitful discussions with Per Rønnedal, Mikkel Preem et al. of MAN B&W Diesel A/S, Copenhagen, Denmark.  相似文献   

10.
The present work focuses on the development of a physically-based model for large deformation stress-strain response and anisotropic damage in rubber-toughened glassy polymers. The main features leading to a microstructural evolution (regarding cavitation, void aspect ratio, matrix plastic anisotropy and rubbery phase deformation) in rubber-toughened glassy polymers are introduced in the proposed constitutive model. The constitutive response of the glassy polymer matrix is modelled using the hyperelastic-viscoplastic model of [Boyce et al., 1988] and [Boyce et al., 2000]. The deformation mechanisms of the matrix material are accounted for by two resistances: an elastic-viscoplastic isotropic intermolecular resistance acting in parallel with a visco-hyperelastic anisotropic network resistance, each resistance being modified to account for damage effects by void growth with a variation of the void aspect ratio. The effective contribution of the hyperelastic particles to the overall composite behaviour is taken into account by treating the overall system in a composite scheme framework. The capabilities of the proposed constitutive model are checked by comparing experimental data with numerical simulations. The deformation behaviour of rubber-toughened poly(methyl methacrylate) was investigated experimentally in tension at a temperature of 80 °C and for different constant true strain rates monitored by a video-controlled technique. The reinforcing phase is of the soft core-hard shell type and its diameter is of the order of one hundred nanometers. The particle volume fraction was adjusted from 15% to 45% by increments of 5%. The stress-strain response and the inelastic volumetric strain are found to depend markedly on particle volume fraction. For a wide range of rubber volume fractions, the model simulations are in good agreement with the experimental results. Finally, a parametric analysis demonstrates the importance of accounting for void shape, matrix plastic anisotropy and rubber content.  相似文献   

11.
Severe contact stress problems generate high temperature and create thermomechanical gouging and wear due to high velocity sliding between two materials staying in contact. In order to improve the facilitation of the design of particular components and improve performance of these engineering applications, it is necessary to better understand the physical behavior of high speed environment. As presented here this environment is made up of two components in contact. Therefore, basing on the experimental approach ( [Lodygowski, 2010] and [Lodygowski et al., submitted for publication]) the major consideration of this paper is aimed to develop an experimental/theoretical model for the material constitutive behavior in order to better characterize and predict the internal failure surrounding the gouging and wear events.This research is to be carried out in two stages. First, by investigating the phenomenon of wear and later it will be extended to incorporate gauging problems. The principle of virtual power is used by introducing the contributions from damage and its corresponding gradients as a measure of micro motion of damage within the bulk. In addition two internal state variables are introduced on the frictional contact interface, one measuring the tangential slip and another measuring the wear. By using these internal state variables together with displacement and temperature, the constitutive model is formulated with state laws based on the free energies and the complimentary laws based on the dissipation potentials. The proposed theoretical model is implemented as user defined subroutine VUMAT in the explicit finite element code ABAQUS to analyze the structural response of the ultra high speed sliding experiment between Steel and VascoMax steel at Ecole de’Nationale Institut der Mechanic, at Metz France.This model provides a potential feature for enabling one to relate the non-local continuum plasticity and damage of the bulk material to friction and wear at the contact interfaces. The findings of this research effort is invaluable in providing a multiscale material model and numerical procedure that will be used within a hydrocode to better facilitate the design components of the severe contact stress applications.  相似文献   

12.
The motion and deformation of soft particles are commonly encountered and important in many applications. A discrete element-embedded finite element model (DEFEM) is proposed to solve soft particle motion and deformation, which combines discrete element and finite element methods. The collisional surface of soft particles is covered by several dynamical embedded discrete elements (EDEs) to model the collisional external forces of the particles. The particle deformation, motion, and rotation are independent of each other in the DEFEM. The deformation and internal forces are simulated using the finite element model, whereas the particle rotation and motion calculations are based on the discrete element model. By inheriting the advantages of existing coupling methods, the contact force and contact search between soft particles are improved with the aid of the EDE. Soft particle packing is simulated using the DEFEM for two cases: particle accumulation along a rectangular straight wall and a wall with an inclined angle. The large particle deformation in the lower layers can be simulated using current methods, where the deformed particle shape is either irregular in the marginal region or nearly hexagonal in the tightly packed central region. This method can also be used to simulate the deformation, motion, and heat transfer of non-spherical soft particles.  相似文献   

13.
The axisymmetric contact problem of sliding of two solid parabolic indenters on a viscoelastic half-space with constant velocity is considered. Shear stresses modeling the adhesive component of the friction force act in the contact area. The model of the foundation material is described by an integral operator with an exponential kernel characterized by one relaxation time. The problem is solved by the boundary element method. The dependences of the contact characteristics on the sliding velocity, the normal load, and the distance between the centers of the indenters is analyzed. The results can be used to study the effect of the roughness elements modeled by two indenters on the contact characteristics and the deformation component of the friction force.  相似文献   

14.
薄膜破坏过程数值模拟的MPM方法   总被引:2,自引:0,他引:2  
郑勇刚  顾元宪  陈震 《力学学报》2006,38(3):347-355
将连续与不连续本构模型相结合用于薄膜破坏过程的模拟计算. 采用von Mises关联塑性本构模型描述材料的弹塑性变形过程,在塑性硬化和软化阶段通过检查分岔 是否发生, 从而判断是否有破坏出现,即材料出现应变局部化现象. 一旦出现破坏,则在发生 破坏的区域采用位移不连续(decohesion)本构模型进行模拟, 直到破坏面两侧材料完全分离. 分离阶段采用相应的分离算法同时运用黏性边界条件以提高计算效率. 结果表明结合连续与 不连续本构模型的方法, 能很好地模拟材料从局部化到完全破坏的过程,体现了材料破坏连续 建模的思想,可用于预测材料发生破坏的环境和形式, 从而通过改变材料工作环境提高其使用 寿命;同时数值算例也显示了物质点法(material-point-method, 简称MPM)的健壮性和有 效性.  相似文献   

15.
This study is focused on dynamic modeling of planar multibody systems with multiple deep groove ball bearing joints, in which the radial clearance, contact deformation, and bearing kinematics are included. By using the approach presented, the variation of the joint reaction force and the dynamic load on each ball element in bearings can be simulated. The deep groove ball bearing joints are modeled by introducing a nonlinear force system, which takes into account the contact elastic deformations between the ball elements and the raceways. The contact force is calculated by the Hertzian contact deformation theory that accounts for the geometrical and material properties of the contacting bodies. A planar slider-crank mechanism with two deep groove ball bearing joints is chosen as an example to demonstrate the application of the methodologies presented in this paper. In this model, one bearing locates at the joint between the ground and crank, while the other one locates at the joint between the crank and connecting rod. By numerical calculation, the dynamic load distribution characteristics of bearings under real mechanism movement conditions are simulated. From the results, it can be concluded that the dynamic load on each rolling element varies differently and belongs to a variable load with the change of mechanism configuration. Load characteristic analysis is the foundation of developing research on the fatigue life and reliability of bearings. This study will provide a key mechanical support for the performance evaluation, dynamic design, and geometrical parameter optimization of the joint rolling element bearings.  相似文献   

16.
Most of the analytical models found in the literature, to study the contact between cylindrical bodies, are based on the Hertz pressure distribution. The major shortcomings associated with these cylindrical models concern their nonlinearity. Firstly, the indentation is expressed as an implicit function of the contact force, thus a numerical iterative technique is required to evaluate the contact force for a given indentation. In a dynamic analysis code, it is implied that at each integration time step, the iterative process for the solution of the nonlinear equations has to be solved. Secondly, the current cylindrical contact models include logarithmic functions, which impose mathematical and physical limitations on their application, particularly for conformal contact conditions with lower clearance values. The validity domain of each contact model is identified in this work with relation to the clearance value and material properties of the contacting cylinders. A comparative assessment of the performance of each model is performed calculating the relative difference of each one in relation to Johnson’s model. The results show that, in general, different models exhibit distinct behavior for both the internal and external contact between cylinders. The load limit of each model and the restrictions on its application is identified using two simple examples of mechanical engineering practice in which internal contacting cylinders are involved and analyzed to include: journal bearings and roller chain drives.  相似文献   

17.
借助计算机辅助设计软件SolidEdge,根据人体解剖学数据建立了人体脊柱L3-L5段近似三维几何模型,并利用有限元分析软件ANSYS进行赋值,模拟了脊柱L3-L5段的结构特性、材料特性、接触特性。将椎骨划分为皮质骨、松质骨等结构,用接触连接的方法模拟了椎骨与椎间盘之间、小关节之间的连接情况,采用实体单元Solid187对其进行网格划分。对该三维有限元模型进行加载分析,得到其在200N轴向力作用下和100N侧向力作用下的应力和变形数据,该数据可以为脊柱生物力学的研究和侧凸脊柱的病因及矫正提供一定的参考依据。  相似文献   

18.
The quasi-static and dynamic compressive behavior of pyramidal truss cores made of 304 stainless steel were investigated using a combination of experimental techniques. Quasi-static tests were performed using a miniature loading stage while a Kolsky bar apparatus was used to investigate intermediate deformation rates. High deformation rates were examined using a light gas gun. Optical imaging of the sample deformation was performed in real time by means of high-speed photography. In this article, we provide a quantification of load-deformation response and associated failure modes across the sample as captured by high-speed photography. A finite element model is formulated and thorough simulations performed to understand the roles of material strain rate hardening and structural microinertia. Deformation modes were identified from acquired images, force-deformation histories and numerical modeling. Comparison between force-deformation histories under quasi-static and Kolsky bar loading reveals a moderate microinertia effect as manifested by a small increase in peak compressive stress. At high deformation rates, gas gun experiments, a totally different deformation mode is manifested with a major increase in peak compressive stress. In this case, the inertia associated to the bending and buckling of truss struts played a significant role. This effect appears to dominate the early truss core response because of two effects: (i) the propagation of a plastic wave along the truss members; (ii) buckling induced lateral motion. These findings are consistent with prior theoretical and computational work carried out by Vaughn et al. (2005) [Vaughn, D. Canning, M., Hutchinson, J.W., 2005. Coupled plastic wave propagation and column buckling. Journal of Applied Mechanics 72 (1), 1–8]. At larger deformations, the material strain rate hardening contribution to the total energy is as pronounced as the contribution arising from microinertia effect.  相似文献   

19.
Modeling strain gradient plasticity effects has achieved considerable success in recent years. However, incorporating the full mechanisms of the pressure-sensitive yielding and the size dependence of plastic deformation still remains an open challenge. In this work, a mechanism-based stain gradient (MSG) plasticity theory for pressure sensitive materials with a variable material length-scale parameter is presented. The flow theory of MSG plasticity based on the Drucker–Prager yield function is established following the same hierarchical framework of MSG plasticity proposed by Gao et al., 1999, Huang et al., 2000 and Qiu et al. (2003) in order to link the strain gradient plasticity theory on the mesoscale to the Taylor dislocation model on the micro-scale. The incremental constitutive relation based on the associated flow rule is derived for the Drucker–Prager yield function on the micro-scale, including the higher-order stress introduced as the thermodynamic conjugate of strain gradient at the mesoscale. The proposed theory successfully predicts the experimental results. The numerical results show that when the pressure-sensitivity index defined by the Drucker–Prager yield function takes different values, the material response curves are different and the material strength increases with the increase of pressure-sensitivity index. It proves that this procedure is able to represent the material behavior of pressure-sensitive materials such as geomaterials, polymeric materials, metallic foams and metallic glass.  相似文献   

20.
A temperature-dependent viscodamage model is proposed and coupled to the temperature-dependent Schapery’s nonlinear viscoelasticity and the temperature-dependent Perzyna’s viscoplasticity constitutive model presented in Abu Al-Rub et al., 2009, Huang et al., in press in order to model the nonlinear constitutive behavior of asphalt mixes. The thermo-viscodamage model is formulated to be a function of temperature, total effective strain, and the damage driving force which is expressed in terms of the stress invariants of the effective stress in the undamaged configuration. This expression for the damage force allows for the distinction between the influence of compression and extension loading conditions on damage nucleation and growth. A systematic procedure for obtaining the thermo-viscodamage model parameters using creep test data at different stress levels and different temperatures is presented. The recursive-iterative and radial return algorithms are used for the numerical implementation of the nonlinear viscoelasticity and viscoplasticity models, respectively, whereas the viscodamage model is implemented using the effective (undamaged) configuration concept. Numerical algorithms are implemented in the well-known finite element code Abaqus via the user material subroutine UMAT. The model is then calibrated and verified by comparing the model predictions with experimental data that include creep-recovery, creep, and uniaxial constant strain rate tests over a range of temperatures, stress levels, and strain rates. It is shown that the presented constitutive model is capable of predicting the nonlinear behavior of asphaltic mixes under different loading conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号