首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
类金刚石多层膜在不同环境下的摩擦磨损行为研究   总被引:4,自引:2,他引:4  
采用等离子体辅助化学气相沉积法在单晶硅表面制备由硬/软亚层交替构成的类金刚石多层膜,通过调整工艺参数获得亚层厚度在25~1000nm之间的DLC多层膜,采用球-盘摩擦磨损试验机探讨了DLC多层膜在真空、氧气及干燥空气下的摩擦磨损行为.结果表明,在不同摩擦环境下,多层结构对DLC多层膜的摩擦系数影响较小,但对其磨损率影响较大.多层结构可以有效抑制DLC膜的磨损,特别是在氧气和干燥空气环境中,DLC多层膜的磨损率明显低于DLC单层膜.特定亚层厚度的DLC多层膜在不同摩擦环境中均具有稳定的耐磨性能,磨损率约在10^-8mm^3/Nm数量级.  相似文献   

2.
毛细力诱发的粘附现象在自然界和工农业生产中广泛存在,例如微机电系统、微纳米自组装、油气驱替等.本文系统研究了两根微梁的毛细粘附行为,包括梁剥离过程中液桥的形貌以及剥离力-位移变化规律.试验发现,微梁在毛细力作用下的剥离部分经历了液膜粘附和液滴粘附两个阶段.考虑两个阶段的液桥形状特征,分别建立系统的能量泛函,采用变分原理推导了考虑毛细力的微梁剥离的非线性微分方程和边界条件.基于Matlab 编程求解方程,得到了剥离力-位移曲线,理论计算与试验结果具有很好的一致性.另外,参数研究表明,接触角和表面张力系数对液膜粘附的微梁剥离影响显著,而对液滴粘附的剥离影响较小;微梁刚度对两个阶段的剥离都有明显影响.本文的试验结果和理论分析对于实际工程中微结构的定量设计具有一定参考价值.  相似文献   

3.
小宽厚比喷嘴喷射出的平面水膜进入静止空气中,在不同气流流速环境下对水膜碎裂过程进行了实验研究。结果表明,静止空气中的水膜表面波呈现对称波形,射流的碎裂长度随雷诺数的增大而增大,喷射压力对射流碎裂长度没有直接影响。空气助力作用使平面射流表面波的上、下气液交界面出现相位差。水膜的碎裂长度随空气助力气流速度的增大而减小;空气助力对于低雷诺数水膜射流具有很强的促进碎裂作用,所以会极大地改善低雷诺数射流的一次雾化效果。随着水流雷诺数的提高,空气助力作用对水膜碎裂长度的影响大为减弱;即使在高速助力空气的作用下,水膜仍长期保持较稳定的射流流态,没有出现明显的水膜撕裂现象。说明在小宽厚比喷嘴的瑞利(Rayleigh)模式射流中,高雷诺数射流是水膜的稳定因素。与气液流速比、气流马赫数等无量纲参数相比,液体喷射的雷诺数是射流碎裂的主要影响因素。  相似文献   

4.
考虑液膜空化效应的影响,研究螺旋槽液体润滑机械密封的动力学特性. 基于液体润滑理论和小扰动法,建立了考虑液膜空化的密封微扰膜压控制方程,采用有限单元法对端面液膜三自由度微扰下的液膜刚度和阻尼系数进行了数值求解,分析了不同参数对液膜密封动力系数的影响. 螺旋槽深度在10 μm左右、槽坝比在0.75左右、槽宽比在0.4左右,螺旋角在9°左右时液膜具有最大的轴向和角向刚度系数. 螺旋槽深度在5 μm左右、槽宽比在0.6左右、螺旋角在20°左右时,两角向交叉阻尼绝对值最大. 初始偏角的存在使密封压力呈现非对称性,从而使两角向动力系数绝对值不再相等. 液膜轴向刚度kzz在数量级上远大于其余液膜刚度值,液膜轴向阻尼dzz、角向阻尼dαα和dββ远大于液膜其余阻尼值且随着转速和间隙的增大而减小.   相似文献   

5.
以受轴向载荷的三点接触球轴承为研究对象,采用Heathcote轴承滚动滑动理论,计算了轴承球与套圈之间的表面滑动,并根据固体表面受力变形,计算了固体薄膜润滑情况下轴承球与滚道间的牵引力,对比分析了混合式陶瓷球轴承和全钢轴承在高速下产生的热量、表面剪应力、旋滚比以及接触角等重要轴承性能参数.结果表明:在PTFE固体薄膜润滑下,陶瓷球轴承在40 000r/min、3000N载荷下所产生的热量仅为钢轴承的62.6%,旋滚比为钢轴承的18%.试验结果对特殊工况下陶瓷球轴承的设计和应用具有参考价值.  相似文献   

6.
温度对10MW高温气冷堆用石墨摩擦性能的影响   总被引:1,自引:1,他引:1  
采用SRV标准摩擦磨损试验台研究了温度对10MW高温气冷堆用石墨IG-11在空气和氦气中的摩擦性能的影响.结果表明:在空气中,室温、100℃、200℃和300℃下石墨的摩擦系数相当,400℃下石墨的摩擦系数最小;在氦气中,室温时石墨的摩擦系数最大,而其它温度下的摩擦系数相对较小.其原因在于,石墨在较高温度下同空气发生氧化反应,在摩擦表面形成具有减摩作用的反应膜,从而使摩擦系数减小.在氦气中,摩擦系数的减小主要归因于石墨层间范德华力的减小。  相似文献   

7.
考虑表面蒸发压力和热毛细力作用情况下,对饱和蒸发状态下低雷诺数自由降落液膜在小波幅正弦型波纹壁面上的流动进行理论分析。对控制微分方程及边界条件进行量纲一化并引入流函数,对微分方程及边界条件进行摄动展开,得到了这种情况下液膜流动的简化分析模型,求出了近似解析解。讨论了壁面波纹、表面张力、蒸发压力、热毛细力对液膜流动的影响。研究表明:液膜的波动幅度随蒸发强度和热毛细力的增大而增大;液膜波动与壁面波纹的相位差随蒸发强度增大而增大,随热毛细力增大而减小。  相似文献   

8.
将不同规格的微孔膜覆盖于锌空气电池气体扩散电极表面,探究微孔膜对锌空气电池失水和性能的影响。实验结果表明:在微孔间距小于临界间距时,覆盖微孔膜可使锌空气电池的失水量减少40%~80%,而不会阻碍氧气的传输。微孔数目越少,电池失水量越少,放电性能也越好。当微孔间距达到临界值时,电池失水量达到最小值。氧气在微孔膜上的通量远高于水蒸汽在微孔膜上的通量。  相似文献   

9.
分子沉积膜纳米压痕过程的分子动力学模拟   总被引:2,自引:0,他引:2  
在利用联合原子模型并考虑静电力作用的基础上,采用分子动力学模拟方法研究了金探针作用下分子沉积膜的纳米压痕过程,并对其纳米力学行为进行了理论分析.结果表明,分子沉积膜在探针压下过程中出现了明显的接触跳跃现象,探针下面的膜的分子倾角和法向载荷呈现出相同的滞后趋势,这可能是探针和分子沉积膜之间粘着力作用的结果.  相似文献   

10.
针对油气混输工况密封腔内含气率变化所引起的液膜承载力不稳定问题,考虑密封腔内油气两相介质的互溶性特征,将溶解度方程引入包含Jakobsson–Floberg–Olsson (JFO)边界条件的广义稳态Reynolds方程,建立了考虑甲烷溶解效应的液膜密封润滑模型.采用有限差分法求解该溶解润滑模型,研究了液膜压力、甲烷溶解度及油相黏度之间的相互影响机制.在不同的螺旋槽结构参数与工况条件下,对比分析了甲烷溶解效应对液膜密封机理及密封性能的影响.结果表明:甲烷溶解效应在液膜高压区对油相黏度影响大;考虑甲烷溶解时所得的液膜开启力减小、空化率增大、摩擦系数增大以及泄漏量减小,且液膜动压效应越强时甲烷溶解效应对密封性能的影响越大.在高压及输送油气介质时,气体溶解对密封性能的影响不可忽略.  相似文献   

11.
师晋生 《力学季刊》2006,27(4):693-698
对高粘度液体在等温正弦形波纹壁面上的自由降落与蒸发建立了摄动分析模型。得到了流动的分析解和蒸发传热的数值解。考察了壁面波纹的波幅和波数、液膜表面张力及贝克利数对流动与传热的影响,结果表明,加大波纹的波幅、适当选择波数、减小贝克利数可增强传热,而表面张力对蒸发传热的影响较小。  相似文献   

12.
A technique for measuring condensate film thickness using an ultrasonic transducer is described. In the experiment, the condensate film thickness with R-113 and FC-72 (a fluorinert compound developed by the 3M Company) condensing on the horizontal lower surface of a rectangular duct was measured at several locations. From the measured values a power law relation between the condensate film thickness and the axial distance from the leading edge of the condensing surface was derived by regression analysis. Assuming a linear temperature profile in the condensate film, local and average heat transfer coefficients were computed from the condensate film thickness. The average heat transfer coefficients were compared with the values obtained by measuring the heat transfer rate to the coolant. The two values were within ±12% of each other. As yet there is no satisfactory analytical model to predict the local heat transfer coefficient even in the annular condensation regime. One of the main difficulties in modeling the condensation is the lack of a suitable model to predict the interfacial shear stress. With the measurement of the film thickness it is possible to determine the interfacial shear stress. It is hoped that the shear stresses so determined will lead to the development of a satisfactory model for interfacial shear stress with condensation.  相似文献   

13.
This paper reports the external convective heat transfer in an innovative low-pressure vane, designed with a multi-splitter configuration. Three aerodynamic airfoils are positioned in between larger structural vanes, replacing struts presently used in current aero-engines, which results in superior aerodynamic performance. Static pressure and heat flux measurements were carried out in the large compression tube facility of the von Karman Institute, using pneumatic taps and single-layered thin film gauges respectively. The steady and unsteady heat transfer distributions were obtained at representative conditions of modern aero-engines, with M2,is close to unity and a Reynolds number of approximately 106. This facility is specially suited to control the gas-to-wall temperature ratio that drives transition mechanisms. The heat transfer across the multi-splittered passages is confronted with correlations on ducts to further characterize the boundary layer status. The data will be used to guide code developers by verifying their boundary layer transition models, and designers by showing the areas of the vane where heat transfer is most sensitive to the off-design conditions.  相似文献   

14.
This paper presents the experimental results of the local heat transfer for falling film evaporation of water sheet by solving the inverse heat conduction problem. It is shown that the local heat transfer coefficients increase by increasing the air flow velocity, the film liquid flow rate or decreasing the inlet bulk film temperature. Correlations for the mean heat transfer coefficients in the absence of superimposed flow for the stagnation region, the thermally developed region and the bottom of the heated cylinder are proposed.  相似文献   

15.
对等温竖直壁面上层流液膜发展段的流动换热进行了理论分析 ,用积分法得到并求解了速度和温度边界层的积分方程式 ,求得了发展段的流动和换热特性的变化规律 ,讨论了进口流态和普朗特数对换热的影响。  相似文献   

16.
This work presents the numerical study of a film‐cooled blade under the influence of wake passing at different incidence angles. The film cooling technology has been proven to be effective to increase the blade life of first turbine stages. However, the leading edge is affected by an high heat transfer rate and cooling this region is difficult. Moreover, separated regions downstream the coolant injection increases the local heat transfer coefficient and can have a detrimental effect in terms of airfoil life. This work analyses how the flow field is affected by the wake passing at different incidence angles (?5, 0, 5) and the impact on heat transfer coefficient. The test case is a linear cascade with two rows of cylindrical holes at the leading edge. Two different holes arrangements are compared in terms of film cooling structures, namely AGTB‐B1 and AGTB‐B2 with 0 and 45° spanwise inclination. The numerical results show a good agreement with the experiments. A deeper investigation is carried out on AGTB‐B1. The results obtained show that the wake passing and the incidence angle have a strong effect on coolant jets. In particular, there is a significative impact on coolant redistribution near the leading edge. The wake passing has a stronger effect on pressure side, mainly at negative incidence. The predictive approach is based on an U‐RANS in‐house CFD solver using a conventional two‐equations closure. In order to avoid extra turbulence production, critical in the leading edge region, the turbulence model incorporates an extra algebraic equation that enforces a realizability constraint. The unsteady formulation is based on a dual time stepping approach with a sliding plane between the moving bars and the cascade. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Heat transfer in a film flow of the FC-72 dielectric liquid down a vertical surface with an embedded 150×150 mm heater is experimentally examined in the range of Reynolds numbers Re = 5–375. A chart of liquid-film flow modes is constructed, and characteristic heat-transfer regions are identified. Data on the dependence of heater-wall temperature and local heat flux at the axis of symmetry of the heater on the longitudinal coordinate are obtained. Local and mean heat-transfer coefficients are calculated. It is shown that enhanced heat transfer is observed in the region where rivulets starts forming in the low-Reynolds-number liquid-film flow.  相似文献   

18.
A theoretical study of forced convective film condensation inside vertical tubes is presented. We propose a unified procedure for predicting the pressure gradient and condensation heat transfer coefficient of a vapor flowing turbulently in the core and associated with laminar or turbulent film on the tube wall. The analysis for the vapor flows is performed under the condition that the velocity profiles are locally self-similar. The laminar and turbulent film models equate the gravity, pressure and viscous forces, and consider the effect of interfacial shear. The transition from laminar to turbulent film depends not only on the liquid Reynolds number but also on the interfacial shear stress. In this work we also proposed a new eddy viscosity model which is divided into three regions: the inner region in liquid condensate near the wall; the interface region including both liquid and vapor; and the outer region for the vapor core. Comparisons of the theory with some published experimental data showed good agreement.  相似文献   

19.
The study considers algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow, focusing in particular on momentum and heat transfer (so-called ‘convective boiling’) through the annular liquid film. In contrast with single-phase wall-bounded flow theory, shear-driven annular liquid films are assumed here to behave as fluid-bounded flows, mostly interacting with the shearing gas-entrained droplets core flow. Besides providing velocity and temperature profiles through the liquid film, the turbulence model proposed here predicts key parameters such as the average liquid film thickness, the void fraction and the convective boiling heat transfer coefficient with accuracies comparable or better than those of leading design correlations. This turbulence model is part of a unified annular flow modeling suite that includes methods to predict the entrained liquid fraction and the axial frictional pressure gradient. The underlying heat transfer database covers nine fluids (water, two hydrocarbons and six refrigerants) for vertical and horizontal tubes of 1.03-14.4 mm diameter and pressures of 0.1-7.2 MPa. Importantly, this study shows that there appears to be no macro-to-microscale transition when it comes to annular flow. Simply better physical modeling is required to span this range.  相似文献   

20.
Local heat transfer and pressure drop measurements were made during condensation of a zeotropic CFC114-CFCll3 refrigerant mixture in the annulus of a double-tube coil consisting of three U-bends and four straight lengths. The inner tube is a 19.1-mm O.D. corrugated copper tube with wire fins soldered onto the outer surface and the inner diameter of the outer duct is 25.0 mm. The vapor-phase mass transfer coefficient exhibited a sawtooth behavior with the U-bends showing higher coefficients than the straight lengths. The frictional pressure gradient data agreed well with a previously developed empirical equation for the condensation of pure refrigerants. A prediction method for the condensation heat transfer rate was proposed on the basis of the correlations of the vapor-phase mass transfer coefficient and heat transfer coefficient of the condensate film. The heat transfer data were correlated by the present method to a mean absolute deviation of 12.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号