首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
为研究水平管内气液两相螺旋流的流动特性,开展了以空气和水为实验介质,含气率为10%~90%,气相折算速度为0.01~3.4m/s,液相折算速度为0.05~2.7m/s的气液两相螺旋流实验.利用高速摄影机记录并参考借鉴相关研究结果分析和划分了不同工况下的流型;给出了水平管内气液两相螺旋流的流型图;研究了不同流速、不同起旋参数对流动特性(压降、流型衰减、螺距、螺旋直径以及流型转换边界等)的影响.实验结论如下:将水平管内气液两相螺旋流的流型划分为螺旋波状分层流、螺旋泡状流、螺旋团状流、螺旋线状流、螺旋轴状流、螺旋弥散流6种;将绘制的流型图与经典Mandhane流型图进行对比,出现了线状流、弥散流和轴状流3种新的流型;泡状流的分布基本不变,层状流的分布发生变化,当气相流速在2m/s以内时是线状流和轴状流,而不是层状流;随着液相流速的提高,管内两相流动的损失逐渐变大,流型的衰减程度变弱,螺旋扭矩逐渐变大,螺旋直径逐渐变小.另外,随着叶轮角度的增大或者随着叶片面积的减小,流型转换边界均向进气量增大的方向推移.而当进气量一定时,随着叶轮角度的增大或者随着叶片面积的减小,同样流型转换边界趋于进水量增大的方向.最后,随着起旋角度的增大或者随着叶片面积的减小,压降均有逐渐变大的趋势.  相似文献   

2.
关于气液两相流流型及其判别的若干问题   总被引:25,自引:0,他引:25  
气液两相流体系是一个复杂的多变量随机过程体系,流型的定 义、流型过渡准则和判别方法等方面的研究是多相流学科目前研究的 重点内容.本文就与气液两相流流型及其判别有关的研究状况进行了回 顾和评述,力图反映近年来气液两相流流型及其判别问题研究的状态 和趋势.  相似文献   

3.
对空气-油在垂直下降管中的流型进行了实验研究,采用的管径为29mm,油和空气的折算流速分别达到4m/s和20m/s,并借助于压降脉动分析和目测观察相结合的方法来进行流型的识别。研究表明,油气两相流的流型不同于低粘液体的两相流流动,通过实验研究并结合前人的研究成果,给出了液相粘度对流型转变的影响趋势。  相似文献   

4.
建立实验系统,在维持管道出口压力为0.2MPa的条件下,对内径分别为15mm、25mm、40mm、65mm的垂直向下管内空气-水气液两相流动进行了实验研究,获得了两相流泡状-弹状流型分布。实验研究发现:管径对于泡状流与弹状流流型特征有较大影响,并且进一步影响流型转换边界,随着管径增加,泡状流-弹状流的流型转换边界向折算气速减小的方向移动。基于理论推导及实验数据,建立了垂直向下管内气液两相流泡状流-弹状流流型转换预测模型,该模型对本文实验工况条件下的垂直向下管内空气-水气液两相流流型转换具有良好的预测效果,预测模型的计算结果与实验数据之间的误差小于10%。  相似文献   

5.
圆截面光滑直管内充分发展的两流体同心环状流的线性稳定性 研究不仅具有重要的学术意义,而且在预测两相流型转换方面也有着 重要应用.本文评述了该流动构型的线性稳定性研究进展,着重分析 了该流动构型的失稳机制及其与两相流型转换间的关系,并针对微重 力气-液两相流地面模拟实验问题,探讨了今后需要着重研究的若干 方面.  相似文献   

6.
基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切-挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.   相似文献   

7.
基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切–挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.  相似文献   

8.
孙保苍 《江苏力学》1995,(10):37-39
本文阐述了应变模态分析的基本原理及相应的参数识别方法,讨论了应变传递函数与应变模态振型、应变传递函数的性质,模态参数的识别以及应变传递函数与激振力谱、应变响应谱之间的关系。  相似文献   

9.
时变结构的参数识别方法   总被引:19,自引:0,他引:19  
邹经湘  杨炳渊 《力学进展》2000,30(3):370-377
较详细地叙述了时变结构参数识别方法在国内外的研究进展,指出了这一工作深入研究的理论与实际意义.对其中的典型研究成果,包括自动控制理论领域的研究成果,给出了简要介绍,叙述了将广义系统的识别方法用于结构系统的思路和问题,特别是在线识别技术和神经网络技术.介绍了使用小波理论来识别时变结构参数的新思想.最后简要地展望了这一领域的发展前景.  相似文献   

10.
研究了基于Morlet小波的模态参数的识别方法。针对密集模态识别的问题,提出了通过引入带宽参数和中心频率两个变调节因子来调节Morlet小波的波形,提高了频域和时域的识别分辨率。使用MATLAB编程实现了算法的求解辨识过程,分析了所提算法中影响因子的作用。通过实例分析,对比了三自由度线性阻尼系统基于小波变换算法和基于频响函数算法的识别结果,验证了小波变换算法的正确性;通过圆盘实验实际测试数据的试验模态分析结果,充分验证了所提算法在密集模态识别中的有效性。  相似文献   

11.
This paper presents an application of the wavelet analysis technique for two-phase flow pattern identification by using the void fraction signals obtained from a multi-channel Impedance Void Meter (IVM) in a vertical-upward air–water flow. A new method for the objective discrimination of the two-phase flow pattern has been developed to provide information regarding the local energy of void fraction signals at a given scale on the joint time–frequency diagram. The void signals are processed with Continuous Wavelet Transform (CWT) to get the local wavelet energy coefficients map on the time–frequency diagram. The effective local wavelet energy and the effective scale are then calculated. Then the criteria for flow pattern identification are, finally, obtained. A series of void fraction measurements were conducted over a wide range of air–water vertical-upward flow condition to provide an extensive database to cover several types of flow patterns. The results show that the proposed method has a high precision for characterizing different flow regimes in two-phase flow, and is considerably more promising for the online recognition of two-phase flow patterns due to the short time of data processing.  相似文献   

12.
In order to investigate the fluctuation characteristics of two-phase flow splitting at a T-junction, particular attention was paid on Churn flow which had the strongest fluctuation comparing with bubble flow and annular flow. The main tube of the T-junction was vertical and the two branches were horizontal. All three pipes connecting to the junction were of 15 mm inner diameter. A statistical analysis based on Root Mean Square (RMS) was applied to temporal differential pressure signals and gas flow rate signals. The Power Spectral Density (PSD) was also employed to reveal their peculiar features in frequency domain as well. The effects of the extraction flow ratio and the gas and liquid superficial velocity upstream on fluctuation characteristics of gas-liquid two-phase flow splitting at the T-junction were investigated in detail. It is found that there is a wide fluctuation in both differential pressure and gas flow rate downstream at every extraction ratio (W3/W1) and the fluctuation intensity increases as W3/W1 increasing. It is also made clear that increasing either water superficial velocity or gas superficial velocity in inlet causes fluctuation to become more intensive.  相似文献   

13.
Gas-particle two-phase turbulent flow in a vertical duct   总被引:5,自引:0,他引:5  
Two-phase gas-phase turbulent flows at various loadings between the two vertical parallel plates are analyzed. A thermodynamically consistent turbulent two-phase flow model that accounts for the phase fluctuation energy transport and interaction is used. The governing equation of the gas-phase is upgraded to a two-equation low Reynolds number turbulence closure model that can be integrated directly to the wall. A no-slip boundary condition for the gas-phase and slip-boundary condition for the particulate phase are used. The computational model is first applied to dilute gas-particle turbulent flow between two parallel vertical walls. The predicted mean velocity and turbulence intensity profiles are compared with the experimental data of Tsuji et al. (1984) for vertical pipe flows, and good agreement is observed. Examples of additional flow properties such as the phasic fluctuation energy, phasic fluctuation energy production and dissipation, as well as interaction momentum and energy supply terms are also presented and discussed.

Applications to the relatively dense gas-particle turbulent flows in a vertical channel are also studied. The model predictions are compared with the experimental data of Miller & Gidaspow and reasonable agreement is observed. It is shown that flow behavior is strongly affected by the phasic fluctuation energy, and the momentum and energy transfer between the particulate and the fluid constituents.  相似文献   


14.
By employing the kinetic theory of solid–liquid two-phase flow, the velocity distribution of sediment was discussed and the theoretical results of the mean square value of the particle peculiar velocity in axis direction and vertical direction were obtained. The comparison of the experimental results of particle motion in horizontal pipe and the calculated results showed satisfactory agreement. The present study is unique not only in simulation of particle fluctuation characteristics in sediment-laden flows, but also in examination of the relationship between the fluid fluctuation intensities and particle fluctuation intensities, which reveals the coherence characteristics of particle and fluid fluctuations in dilute solid–liquid two-phase flows with fine sediments.  相似文献   

15.
欧阳伟平  张冕  孙虎 《力学学报》2016,48(2):464-472
多段压裂水平井技术是目前开采致密气最常用的方法之一,在致密气压裂水平井试井测试中常常伴随着一定的产水量,井筒气液两相流会增加井筒流体的流动阻力,加大井筒流体流动对试井解释的影响.为了明确井筒气液两相流对致密气藏压裂水平井试井的影响,提高产水致密气压裂水平井的试井解释精度,建立了一种井筒气液两相流与地层渗流耦合的试井模型,采用数值方法对模型进行求解,获得了考虑井筒气液两相流的压裂水平井试井理论曲线、压力场分布及裂缝产量分布.研究结果表明:井筒气液两相流会增加试井理论曲线中压力和压力导数值,造成靠近入窗点的压力扩散要快于远离入窗点的压力扩散,引起靠近入窗点的裂缝产量要高于远离入窗点的裂缝产量.现场实例分析进一步说明,不考虑井筒两相流可能会对产水压裂水平井的试井解释结果产生很大误差,主要表现为水平井筒假设为无限大导流能力会使得拟合得到的表皮系数偏大,将测试点视为入窗点会使得拟合得到的原始地层压力偏小.所建立的考虑井筒两相流的压裂水平井试井模型为产水致密气井试井资料的正确解释提供了重要技术保障.  相似文献   

16.
A new method to pattern recognition of gas–liquid two-phase flow regimes based on improved local binary pattern (LBP) operator is proposed in this paper. Five statistic features are computed using the texture pattern matrix obtained from the improved LBP. The support vector machine and back-propagation neural network are trained to flow pattern recognition of five typical gas–liquid flow regimes. Experimental results demonstrate that the proposed method has achieved better recognition accuracy rates than others. It can provide reliable reference for other indirect measurement used to analyze flow patterns by its physical objectivity.  相似文献   

17.
The particle fluctuation velocities of a horizontal self-excited gas–solid two-phase pipe flow with soft fins near MPD (minimum pressure drop) air velocity are first measured by high-speed PIV in the acceleration and fully-developed regimes. Then orthogonal wavelet multi-resolution analysis and power spectrum are used to reveal multi-scale characteristics of particle fluctuation velocity. It is observed that the pronounced peaks of the spectra of axial and vertical fluctuation velocities appear in the range of low frequency near the bottom of pipe. These peaks of spectra become larger and their frequencies decrease by using fins. In the range of low frequencies (3–25 Hz), the wavelet components of the fluctuating energy of axial particle velocity make the main contribution accounting for 87% and 93% respectively for non-fin and using fins near the bottom of pipe. In the range of relatively high frequency (50–400 Hz), however, the wavelet components of using fins, accounting for about 49%, become smaller than that of non-fin, accounting for about 72%, in the suspension flow regime near the top of pipe. The skewness factor of axial particle fluctuation velocity indicates that the wavelet components follow the Gaussian probability distribution as the central frequency decreases.  相似文献   

18.
New data is presented for horizontal air/water two-phase flow having various flow regimes. It is shown that drift-flux models are able to correlate these data and that the drift velocity, Vgj, is normally finite.  相似文献   

19.
The aim of this work is to identify a class of models that can represent the two-phase microfluidic flow in different experimental conditions. The identification procedure adopted is based on the nonlinear systems synchronization theory. The experimental time series were assumed as the asymptotic behavior of a generic state variable of an unknown Master system, and this information was used to drive a second Slave system, with a known model and undefined parameters. To reach the convergence between the time evolutions of the two systems, so the flow identification, an error was evaluated and optimized by tuning the parameters of the Slave system, through genetic algorithm. The Chua’s oscillator has been chosen as a Slave model, and an optimal parameters set of Chua’s system was identified for each of the 18 experiments. As proof of concept on approach validity, the changes in the parameters set in the different experimental conditions were discussed taking into account the results of the nonlinear time series analysis. The results confirm the possibility with a single model to identify a variety of flow regimes generated in two-phase microfluidic processes, independently of how the processes have been generated, no directed relations with the input flow rate used are in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号