首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we present a total variation diminishing (TVD) scheme in the zero relaxation limit for nonlinear hyperbolic conservation law using flux limiters within the framework of a relaxation system that converts a nonlinear conservation law into a system of linear convection equations with nonlinear source terms. We construct a numerical flux for space discretization of the obtained relaxation system and modify the definition of the smoothness parameter depending on the direction of the flow so that the scheme obeys the physical property of hyperbolicity. The advantages of the proposed scheme are that it can give second‐order accuracy everywhere without introducing oscillations for 1‐D problems (at least with) smooth initial condition. Also, the proposed scheme is more efficient as it works for any non‐zero constant value of the flux limiter ? ? [0, 1], where other TVD schemes fail. The resulting scheme is shown to be TVD in the zero relaxation limit for 1‐D scalar equations. Bound for the limiter function is obtained. Numerical results support the theoretical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Conventional high-order schemes with reduced levels of numerical diffusion produce results with spurious oscillations in areas where steep velocity gradients exist. To prevent the development of non-physical oscillations in the solution, several monotonic schemes have been proposed. In this work, three monotonic schemes, namely Van Leer's scheme, Roe's flux limiter and the third-order SHARP scheme, are compared and evaluated against schemes without flux limiters. The latter schemes include the standard first-order upwind scheme, the second-order upwind scheme and the QUICK scheme. All the above schemes are applied to four two-dimensional problems: (i) rotation of a scalar ‘cone’ field, (ii) transport of a scalar ‘square’ field, (iii) mixing of a cold with a hot front and (iv) deformation of a scalar ‘cone’ field. These problems test the ability of the selected schemes to produce oscillation-free and accurate results in critical convective situations. The evaluation of the schemes is based on several aspects, such as accuracy, economy and complexity. The tests performed in this work reveal the merits and demerits of each scheme. It is concluded that high-order schemes with flux limiters can significantly improve the accuracy of the results.  相似文献   

3.
Developing shock-capturing difference methods   总被引:1,自引:1,他引:1  
A new shock-capturing method is proposed which is based on upwind schemes and flux-vector splittings. Firstly, original upwind schemes are projected along characteristic directions. Secondly, the amplitudes of the characteristic decompositions are carefully controlled by limiters to prevent non-physical oscillations. Lastly, the schemes are converted into conservative forms, and the oscillation-free shock-capturing schemes are acquired. Two explicit upwind schemes (2nd-order and 3rd-order) and three compact upwind schemes (3rd-order, 5th-order and 7th-order) are modified by the method for hyperbolic systems and the modified schemes are checked on several one-dimensional and two-dimensional test cases. Some numerical solutions of the schemes are compared with those of a WENO scheme and a MP scheme as well as a compact-WENO scheme. The results show that the method with high order accuracy and high resolutions can capture shock waves smoothly.  相似文献   

4.
A novel class of weighted essentially nonoscillatory (WENO) schemes based on Hermite polynomials,termed as HWENO schemes,is developed and applied as limiters for high order discontinuous Galerkin (DG) method on triangular grids.The developed HWENO methodology utilizes high-order derivative information to keep WENO reconstruction stencils in the von Neumann neighborhood.A simple and efficient technique is also proposed to enhance the smoothness of the existing stencils,making higher-order scheme stable and simplifying the reconstruction process at the same time.The resulting HWENO-based limiters are as compact as the underlying DG schemes and therefore easy to implement.Numerical results for a wide range of flow conditions demonstrate that for DG schemes of up to fourth order of accuracy,the designed HWENO limiters can simultaneously obtain uniform high order accuracy and sharp,essentially non-oscillatory shock transition.  相似文献   

5.
By the aid of an idea of the weighted ENO schemes, some weight-type high-resolution difference schemes with different orders of accuracy are presented in this paper by using suitable weights instead of the minmod functions appearing in various TVD schemes. Numerical comparisons between the weighted schemes and the non-weighted schemes have been done for scalar equation, one-dimensional Euler equations, two-dimensional Navier-Stokes equations and parabolized Navier-Stokes equations. The project supported by the National Natural Science Foundation of China (19582007) and Partly by State Key Laboratory of Scientific/Engineering Computing.  相似文献   

6.
A systematic study has been conducted to assess the performance of the TVD schemes for practical flow computation. The viewpoint adopted here is to treat the TVD schemes as a combination of the standard central difference scheme with numerical dissipation terms. The controlled amount of numerical dissipation modifies the computed fluxes to ensure that the solution is oscillation-free. Four variants of TVD schemes, two with upwind dissipation terms and two with symmetric dissipation terms, have been studied and compared with the conventional Beam-Warming scheme for inviscid and turbulent axisymmetric flow computations. The results obtained show that all four variants can accurately resolve the shock and flow profiles with fewer grid points than the Beam-Warming scheme. The convergence rates of the TVD schemes are also substantially superior to that of the Beam-Warming scheme. The combination of high accuracy, good robustness and improved computational efficiency offered by the TVD schemes makes them attractive for computing high-speed flow with shocks. In terms of the relative performances it is found that the symmetric schemes converge slightly faster but that the upwind schemes are less sensitive to the number of grid points being employed.  相似文献   

7.
The development of a computer program to solve the axisymmetric full Navier--Stokes equations with k-ε two-equation model of turbulence using various total variation diminishing (TVD) schemes is the primary interest of this study. The computations are performed for the turbulent, transonic, viscous flow over a projectile with/without supporting sting at zero angle of attack. The predicted results, as well as the convergence characteristics, by various TVD schemes are compared with each other. The results show that the TVD schemes of higher-order accuracy do have influence on the regions of high gradients such as shock, base corner and base flow. However, the schemes of third-order accuracy do not necessarily improve the agreement with measured data (which is not available on the base) than that of second-order accuracy, but surely generate apparent different result of base flow. The supporting sting on the projectile base will complicate the base flow and the existence of the sting will slightly shift the shock location and slightly change the flow field after the shock. More iteration steps are needed to get the converged results in the computation for the projectile with sting.  相似文献   

8.
In this work we present an upwind‐based high resolution scheme using flux limiters. Based on the direction of flow we choose the smoothness parameter in such a way that it leads to a truly upwind scheme without losing total variation diminishing (TVD) property for hyperbolic linear systems where characteristic values can be of either sign. Here we present and justify the choice of smoothness parameters. The numerical flux function of a high resolution scheme is constructed using wave speed splitting so that it results into a scheme that truly respects the physical hyperbolicity property. Bounds are given for limiter functions to satisfy TVD property. The proposed scheme is extended for non‐linear problems by using the framework of relaxation system that converts a non‐linear conservation law into a system of linear convection equations with a non‐linear source term. The characteristic speed of relaxation system is chosen locally on three point stencil of grid. This obtained relaxation system is solved using composite scheme technique, i.e. using a combination of proposed scheme with the conservative non‐standard finite difference scheme. Presented numerical results show higher resolution near discontinuity without introducing spurious oscillations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A new resolution-enhancing technique called derivative artificial compression method is developed with multi-dimensional extension. The method is constructed via applying high-resolution difference schemes on derivative equations of conservation laws. In this way, one could overcome the defect of accuracy decay at extreme points that has plagued almost all high-resolution schemes. The new method has high resolution, low dissipation and low diffusion properties, and could enhance the resolution (of numerical solution) both at discontinuities and at extreme points. Numerical experiments are implemented using initial value problems of single conservation law, one-dimensional shock-tube problem, two-dimensional Riemann problems, double Mach reflection problem, and a shock reflection from a wedge. Resolutions of discontinuities, extremes and fine structures are compared between the original TVD scheme, TVD scheme with artificial compression method and TVD scheme with derivative artificial compression method.  相似文献   

10.
A slope modification method is proposed for non-oscillatory schemes based on the Lax-Friedrich solver. The modified scheme is proved to be total-variation-diminishing (TVD) and second-order accurate. Application of the scheme to the shallow water equations produces sharp profiles for shocks and achieves high accuracy in the smooth regions of the solution.  相似文献   

11.
We demonstrate how the background potential energy is an excellent measure of the effective numerical diffusion or antidiffusion of an advection scheme by applying several advection schemes to a standing interfacial gravity wave. All existing advection schemes do not maintain the background potential energy because they are either diffusive, antidiffusive, or oscillatory. By taking advantage of the compressive nature of some schemes, which causes a decrease in the background potential energy, and the diffusive nature of others, which causes an increase in the background potential energy, we develop two background potential energy preserving advection schemes that are well‐suited to study interfacial gravity waves at a density interface between two miscible fluids in closed domains such as lakes. The schemes employ total variation diminishing limiters and universal limiters in which the limiter is a function of both the upwind and local gradients as well as the background potential energy. The effectiveness of the schemes is validated by computing a sloshing interfacial gravity wave with a nonstaggered‐grid Boussinesq solver, in which QUICK is employed for momentum and the pressure correction method is used, which is second‐order accurate in time. For scalar advection, the present background potential energy preserving schemes are employed and compared to other TVD and non‐TVD schemes, and we demonstrate that the schemes can control the change in the background potential energy due to numerical effects. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
We introduce a new fourth order, semi-discrete, central-upwind scheme for solving systems of hyperbolic conservation laws. The scheme is a combination of a fourth order non-oscillatory reconstruction, a semi-discrete central-upwind numerical flux and the third order TVD Runge-Kutta method. Numerical results suggest that the new scheme achieves a uniformly high order accuracy for smooth solutions and produces non-oscillatory profiles for discontinuities. This is especially so for long time evolution problems. The scheme combines the simplicity of the central schemes and accuracy of the upwind schemes. The advantages of the new scheme will be fully realized when solving various examples.  相似文献   

13.
高阶紧致格式分区并行算法   总被引:1,自引:0,他引:1  
针对超声速多尺度复杂流动问题,发展了一种高精度并行算法。计算格式采用五阶迎风紧致格式,用特征型通量限制方法抑制非物理振荡。在对接边界处采用五阶WENO格式,以保证整个计算域内计算精度一致。通过网格分区和数据交换,在MPI平台实现了并行计算。通过超声速算例对算法进行了验证,并对并行效率和加速比进行了分析。最后,将算法应用于超声速转捩、湍流问题的数值模拟。计算结果表明,提出的算法具有较高的精度和分辨率,对接边界光滑连续,并且并行效率较高,在高超声速湍流流动数值模拟中取得了较好的应用效果。  相似文献   

14.
This paper gives a comparative study of TVD‐limiters for standard explicit Finite Volume schemes. In contrast to older studies, it includes also unsymmetrical limiter functions that depend on the local CFL‐number. We classify the limiters and show how to extend these families of limiters. We introduce a new member of the Superbee family, which is adapted to Roe's linear third‐order scheme. Based on an idea by Serna and Marquina, new smooth limiters are introduced, which turn the van Leer and van Albada limiters into complete classes of limiters. The comparison of the limiters is done with some standard test cases. The results clarify the influence of the chosen limiter on the quality of the numerical results. Compared with ENO or WENO schemes, they also show the high resolution, which can be obtained by a CFL‐number‐dependent limiter when the grid is not highly refined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of this paper is the development and assessment of a fourth‐order compact scheme for unsteady incompressible viscous flows. A brief review of the main developments of compact and high‐order schemes for incompressible flows is given. A numerical method is then presented for the simulation of unsteady incompressible flows based on fourth‐order compact discretization with physical boundary conditions implemented directly into the scheme. The equations are discretized on a staggered Cartesian non‐uniform grid and preserve a form of kinetic energy in the inviscid limit when a skew‐symmetric form of the convective terms is used. The accuracy and efficiency of the method are demonstrated in several inviscid and viscous flow problems. Results obtained with different combinations of second‐ and fourth‐order spatial discretizations and together with either the skew‐symmetric or divergence form of the convective term are compared. The performance of these schemes is further demonstrated by two challenging flow problems, linear instability in plane channel flow and a two‐dimensional dipole–wall interaction. Results show that the compact scheme is efficient and that the divergence and skew‐symmetric forms of the convective terms produce very similar results. In some but not all cases, a gain in accuracy and computational time is obtained with a high‐order discretization of only the convective and diffusive terms. Finally, the benefits of compact schemes with respect to second‐order schemes is discussed in the case of the fully developed turbulent channel flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
一类高精度TVD差分格式及其应用   总被引:2,自引:0,他引:2  
构造了一维非线性双曲型守恒律的一个新的高精度、高分辨率的守恒型TvD差分格式。其构造思想是:首先,将计算区间划分为若干个互不相交的小区间,再根据精度要求等分小区间,通过各细小区间上的单元平均状态变量,重构各细小区间交界面上的状态变量,并加以校正;其次,利用近似Riemann解计算细小区间交界面上的数值通量,并结合高阶Runge—Kutta TVD方法进行时间离散,得到了高精度的全离散方法。证明了该格式的TVD特性。该格式适合于使用分量形式计算而无须进行局部特征分解。通过计算几个典型的问题,验证了格式具有高精度、高分辨率且计算简单的优点。  相似文献   

17.
Two optimised high-order compact finite difference (FD) staggered schemes are presented in this communication. Following Holberg's optimisation strategy, the least squares problem to minimising the group velocity (MGV) error, for the fourth- and sixth-order pentadiagonal schemes, is formulated. For a fixed level of group velocity accuracy, the optimised spectrum of wave number and the optimised coefficients for the schemes, are analytically evaluated. The spectral accuracy of these schemes has been verified by several comparisons with the FD staggered schemes obtained following Kim and Lee's (1996) optimisation procedure. Fewer group and phase velocity errors, greater resolution in terms of absolute error and resolving efficiency have been achieved by the optimised schemes proposed. High-order accuracy in time is obtained by marching the solution with an optimised Runge–Kutta scheme. Next, the comparison in terms of the number of grid points per wavelength required to achieve a standard accuracy for distances expressed in terms of the number of wavelengths travelled is presented. Numerical results from benchmark tests for the one-dimensional shallow water equations are presented.  相似文献   

18.
Numerical modelling of convection suitable for cell-centred finite volume methods for incompressible flow is considered. Higher-order accurate and oscillation-free solutions are obtained through flux limiting, Two improvements are discussed: the enhancement of accuracy at smooth extrema of the TVD solution, and the construction of flux limiters, which is based on polynomial interpolants in the normalized variable space. Some implementation issues are outlined. Numerical examples are provided to illustrate these advancements.  相似文献   

19.
High‐resolution total variation diminishing (TVD) schemes are widely used for the numerical approximation of hyperbolic conservation laws. Their extension to equations with source terms involving spatial derivatives is not obvious. In this work, efficient ways of constructing conservative schemes from the conservative, non‐conservative or characteristic form of the equations are described in detail. An upwind, as opposed to a pointwise, treatment of the source terms is adopted here, and a new technique is proposed in which source terms are included in the flux limiter functions to get a complete second‐order compact scheme. A new correction to fix the entropy problem is also presented and a robust treatment of the boundary conditions according to the discretization used is stated. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Almost all evaluations of convection schemes reported in the literature are conducted using simple problems on uniform orthogonal grids; thus, having limited contribution when solving industrial computational fluid dynamics (CFD), where the grids are usually non‐orthogonal with distortions. Herein, several convection schemes are assessed in uniform and distorted non‐orthogonal grids with emphasis on industrial applications. Linear and nonlinear (TVD) convection schemes are assessed on analytical benchmarks in both uniform and distorted grids. To evaluate the performance of the schemes, four error metrics are used: dissipation, phase and L1 errors, and the schemes' effective order of accuracy. Qualitative and quantitative deterioration of these error metrics as a function of the grid distortion metrics are investigated, and rigorous verifications are performed. Recommendations for effective use of the convection schemes based on the range of grid aspect ratio (AR), expansion ratio (ER) and skewness (Q) are included. A ship hydrodynamics case is studied, involving a Reynolds averaged Navier–Stokes simulation of a bare‐hull KVLCC2 tanker using linear and nonlinear convection schemes coupled with isotropic and anisotropic Reynolds‐stress (ARS) turbulence models using CFDShip‐Iowa v4. Predictions of local velocities and turbulent quantities from the midships to the nominal wake plane are compared with experimental fluid dynamics (EFD), and rigorous verification and validation analyses for integral forces and moments are performed for 0° and 12° drift angles. Best predictions are observed when coupling a second‐order TVD scheme with the anisotropic turbulence model. Further improvements are observed in terms of prediction of the vortical structures for 30° drift when using TVD2S‐ARS coupled with DES. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号