首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed. The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.  相似文献   

2.
A finite element formulation for the steady laminar flow of an incompressible fluid with microstructure has been developed. The particular fluids considered are commonly known as micropolar fluids, in which case suspended particulate microstructures are modelled by an ‘extended’ continuum formulation. The particle microspin is a new kinematic variable which is independent of the classical vorticity vector and thereby allows relative rotation between particles and the surrounding fluid. This formulation also gives rise to couple stresses in addition to classical force or traction stresses. The finite element formulation utilizes a variational approach and imposes conservation of mass through a penalty function. A general boundary condition for microspin has been incorporated whereby microspin at a solid boundary is constrained to be proportional to the fluid vorticity. The proportionality constant in this case can vary from zero to unity. Sample solutions are presented for fully developed flow through a straight tube and compared with an analytical solution. Results are also generated for flow through a constricted tube and compared with a Newtonian fluid solution.  相似文献   

3.
The flow of a Newtonian fluid and a Boger fluid through sudden square–square contractions was investigated experimentally aiming to characterize the flow and provide quantitative data for benchmarking in a complex three-dimensional flow. Visualizations of the flow patterns were undertaken using streak-line photography, detailed velocity field measurements were conducted using particle image velocimetry (PIV) and pressure drop measurements were performed in various geometries with different contraction ratios. For the Newtonian fluid, the experimental results are compared with numerical simulations performed using a finite volume method, and excellent agreement is found for the range of Reynolds number tested (Re2 ≤ 23). For the viscoelastic case, recirculations are still present upstream of the contraction but we also observe other complex flow patterns that are dependent on contraction ratio (CR) and Deborah number (De2) for the range of conditions studied: CR = 2.4, 4, 8, 12 and De2 ≤ 150. For low contraction ratios strong divergent flow is observed upstream of the contraction, whereas for high contraction ratios there is no upstream divergent flow, except in the vicinity of the re-entrant corner where a localized atypical divergent flow is observed. For all contraction ratios studied, at sufficiently high Deborah numbers, strong elastic vortex enhancement upstream of the contraction is observed, which leads to the onset of a periodic complex flow at higher flow rates. The vortices observed under steady flow are not closed, and fluid elasticity was found to modify the flow direction within the recirculations as compared to that found for Newtonian fluids. The entry pressure drop, quantified using a Couette correction, was found to increase with the Deborah number for the higher contraction ratios.  相似文献   

4.
In the present paper an unsteady thermal flow of non-Newtonian fluid is investigated which is of the fiow into axisymmetric mould cavity. In the second part an unsteady thermal flow of upper-convected Maxwell fluid is studied, For the flow into mould cavity the constitutive equation of power-law fluid is used as a rheological model of polymer fluid. The apparent viscosity is considered as a function of shear rate and temperature. A characteristic viscosity is introduced in order to avoid the nonlinearity due to the temperature dependence of the apparent viscosity. As the viscosity of the fluid is relatively high the flow of the thermal fluid can be considered as a flow of fully developed velocity field. However, the temperature field of the fluid fiow is considered as an unsteady one. The governing equations are constitutive equation, momentum equation of steady flow and energy conservation equation of non-steady form. The present system of equations has been solved numerically by the splitting differen  相似文献   

5.
We develop a continuum-mechanical formulation and generalization of the Navier–Stokes-α equation based on a recently developed framework for fluid-dynamical theories involving higher-order gradient dependencies. Our flow equation involves two length scales α and β. The first of these enters the theory through the specific free-energy α 2|D|2, where D is the symmetric part of the gradient of the filtered velocity, and contributes a dispersive term to the flow equation. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity and which contributes a viscous term, with coefficient proportional to β 2, to the flow equation. In contrast to Lagrangian averaging, our formulation delivers boundary conditions and a complete structure based on thermodynamics applied to an isothermal system. For a fixed surface without slip, the standard no-slip condition is augmented by a wall-eddy condition involving another length scale characteristic of eddies shed at the boundary and referred to as the wall-eddy length. As an application, we consider the classical problem of turbulent flow in a plane, rectangular channel of gap 2h with fixed, impermeable, slip-free walls and make comparisons with results obtained from direct numerical simulations. We find that α/β ~ Re 0.470 and /h ~ Re −0.772, where Re is the Reynolds number. The first result, which arises as a consequence of identifying the specific free-energy with the specific turbulent kinetic energy, indicates that the choice β = α required to reduce our flow equation to the Navier–Stokes-α equation is likely to be problematic. The second result evinces the classical scaling relation η/L ~ Re −3/4 for the ratio of the Kolmogorov microscale η to the integral length scale L.   相似文献   

6.
In order to study cross flow induced vibration of heat exchanger tube bundles, a new fluid–structure interaction model based on surface vorticity method is proposed. With this model, the vibration of a flexible cylinder is simulated at Re=2.67 × 104, the computational results of the cylinder response, the fluid force, the vibration frequency, and the vorticity map are presented. The numerical results reproduce the amplitude‐limiting and non‐linear (lock‐in) characteristics of flow‐induced vibration. The maximum vibration amplitude as well as its corresponding lock‐in frequency is in good agreement with experimental results. The amplitude of vibration can be as high as 0.88D for the case investigated. As vibration amplitude increases, the amplitude of the lift force also increases. With enhancement of vibration amplitude, the vortex pattern in the near wake changes significantly. This fluid–structure interaction model is further applied to simulate flow‐induced vibration of two tandem cylinders and two side‐by‐side cylinders at similar Reynolds number. Promising and reasonable results and predictions are obtained. It is hopeful that with this relatively simple and computer time saving method, flow induced vibration of a large number of flexible tube bundles can be successfully simulated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The digital particle image velocimetry (DPIV) technique has been used to investigate the flow fields of an elliptic jet in cross flow (EJICF). Two different jet orientations are considered; one with the major axis of the ellipse aligned with the cross flow (henceforth referred to as a low aspect ratio (AR) jet), and the other with the major axis normal to the cross flow (henceforth referred to as a high aspect ratio jet). Results show that the vortex-pairing phenomenon is prevalent in the low aspect ratio jet when the velocity ratio (VR)3, and is absent in the high aspect ratio jet regardless of the velocity ratio. The presence of vortex pairing leads to a substantial increase in the leading-edge peak vorticity compared to the lee-side vorticity, which suggests that vortex pairing may play an important role in the entrainment of ambient fluid into the jet body, at least in the near-field region. In the absence of vortex pairing, both the leading-edge and the lee-side peak vorticity increase monotonically with velocity ratio regardless of the aspect ratio. Moreover, time-averaged velocity fields for both AR=0.5 and AR=2 jets reveal the existence of an unstable focus (UF) downstream of the jet, at least for VR2. The strength and the location of this focus is a function of both the velocity ratio and aspect ratio. In addition, time-averaged vorticity fields show a consistently higher peak-averaged vorticity in the low aspect ratio jet than in the high aspect ratio jet. This behavior could be due to a higher curvature of the vortex filament facing the cross flow in the low aspect ratio jet, which through mutual interaction may lead to higher vortex stretching, and therefore higher peak-averaged vorticity.Nomenclature A nozzle or jet cross-sectional area - AR aspect ratio, defined as the ratio of the nozzle cross-stream dimension to its streamwise dimension, =H/L - D characteristic jet diameter (for circular jet only) - Dh hydraulic diameter, =4A/P - Dmajor major axis of an elliptic nozzle - Dminor minor axis of an elliptic nozzle - H cross-stream dimension of the nozzle - L streamwise dimension of the nozzle - P perimeter of the nozzle - Rej jet Reynolds number, =VjD/ - VR velocity ratio, =Vj/V - Vj mean jet velocity - V mean cross-flow velocity - x downstream distance from jet center - X cross-plane vorticity - kinematic viscosity  相似文献   

8.
Using the fact that for simple fluids the most general constitutive equation in constant stretch history flows for the extra stress tensor τ is known in an explicit form, the Giesekus fluid model is cast into this (ω–D) form for two-dimensional flows. The three material functions needed to characterize τ are listed. The explicit results for simple shear and planar elongation reveal that the parameter α should be restricted to values less than 0.5. It is demonstrated that in this explicit form the constitutive equation is free from thermodynamic objections and can thus be used as a starting point for numerical calculations of general, but steady, two-dimensional flows. Received: 9 November 1998 Accepted: 20 May 1999  相似文献   

9.
Experimental investigation of vortex rings impinging on inclined surfaces   总被引:1,自引:0,他引:1  
Vortex–ring interactions with oblique boundaries were studied experimentally to determine the effects of plate angle on the generation of secondary vorticity, the evolution of the primary vorticity and secondary vorticity as they interact near the boundary, and the associated energy dissipation. Vortex rings were generated using a mechanical piston-cylinder vortex ring generator at jet Reynolds numbers 2,000–4,000 and stroke length to piston diameter ratios (L/D) in the range 0.75–2.0. The plate angle relative to the initial axis of the vortex ring ranged from 3 to 60°. Flow analysis was performed using planar laser-induced fluorescence (PLIF), digital particle image velocimetry (DPIV), and defocusing digital particle tracking velocimetry (DDPTV). Results showed the generation of secondary vorticity at the plate and its subsequent ejection into the fluid. The trajectories of the centers of circulation showed a maximum ejection angle of the secondary vorticity occurring for an angle of incidence of 10°. At lower incidence angles (<20°), the lower portion of the ring, which interacted with the plate first, played an important role in generation of the secondary vorticity and is a key reason for the maximum ejection angle for the secondary vorticity occurring at an incidence angle of 10°. Higher Reynolds number vortex rings resulted in more rapid destabilization of the flow. The three-dimensional DDPTV results showed an arc of secondary vorticity and secondary flow along the sides of the primary vortex ring as it collided with the boundary. Computation of the moments and products of kinetic energy and vorticity magnitude about the centroid of each vortex ring showed increasing asymmetry in the flow as the vortex interaction with the boundary evolved and more rapid dissipation of kinetic energy for higher incidence angles.  相似文献   

10.
The USM-θmodel of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θmodel in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θmodel has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θmodel was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow.  相似文献   

11.
The flow field for two and three circular cylinders of equal diameter D arranged in a side-by-side configuration in steady cross-flow was investigated using flow visualization, hot-film anemometry and particle image velocimetry (PIV), for centre-to-centre pitch ratios from T/D=1·0 to 6·0, and Reynolds numbers from Re=500 to 3000. For two-cylinder arrangements, three basic flow patterns were observed: single bluff-body vortex shedding at small T/D , biased flow with synchronized vortex shedding at intermediateT /D , and symmetric flow with synchronized vortex shedding at larger T/D . For three-cylinder arrangements, either single bluff-body behaviour or an asymmetric biased flow pattern could be observed at smallT /D , whereas a symmetric-biased flow pattern was found at intermediate T/D . Instantaneous representations of the in-plane vorticity field obtained from the PIV technique revealed some variation in these basic flow patterns at given T/D and Re.  相似文献   

12.
The flow around square and diamond prisms and a circular cylinder impulsively set into motion was studied experimentally using the particle image velocimetry (PIV) technique. The experiments were conducted in water in an X-Y towing tank for Reynolds numbers from Re=200-1000. The temporal development of the near-wake recirculation zone, and its pair of primary eddies, was examined from the initial start until the wake became asymmetric, at a dimensionless elapsed time of t?=4 or 5. For both bodies, the length of the recirculation zone, the streamwise location of the primary eddies, and the strength of the primary eddies increased with time following the impulsive start, while the cross-stream spacing of the eddy centres remained nearly constant. The recirculation zones of the square and diamond prisms were longer than that of the impulsively started circular cylinder. For t?>2, the primary eddy strength, maximum vorticity, and cross-stream spacing of the primary eddies, were the same for both the square prism and circular cylinder. The diamond prism had the strongest primary eddies and highest maximum values of vorticity. A comparison of recirculation zone length data for impulsively started bluff bodies of six different cross-sections illustrated the effects of afterbody and forebody shape, with the normal flat plate (no afterbody and no forebody) having the longest recirculation zone and the circular cylinder (rounded afterbody and rounded forebody) having the shortest recirculation zone.  相似文献   

13.
F. Yang 《Rheologica Acta》1998,37(1):68-72
Based on the perfect slip condition between rigid walls and fluids, the compressive flow of Herschel-Bulkley fluids and biviscous fluids was studied. The explicit expressions of stresses and fluid velocity were given. To move the rigid walls for a Herschel-Bulkley fluid with the yield stress (τ0), the mean pressure applied onto the rigid wall should be larger than 2τ0/. No yield surface exists in the interior of the fluids when flow occurs. For a biviscous fluid, a critical load was given. The fluid behaves like the Bingham fluid when the external applied load onto the wall is larger than the critical load, otherwise the fluid is Newtonian. Received: 10 June 1997 Accepted: 22 September 1997  相似文献   

14.
A local mesh refinement virtual boundary method based on a uniform grid is designed to study the transition between the flow patterns of two spheres in tandem arrangement for Re=250. For a small gap (L/D=1.5), the flow field is axisymmetric. As the spacing ratio increases to 2.0, the pressure gradient induces the circumferential fluid motion and a plane‐symmetric flow is constructed through a regular bifurcation. For L/D?2.5, the vortices are periodically shed from the right sphere, but the planar symmetry remains. The case for L/D=3.0 is picked up to give a detail investigation for the unsteady flow. The shedding frequency of vortical structure from the upper side of the right sphere is found to be double of the frequency of the lower side. With the flow spectra of various gaps given, the underlying competitive mechanism between the two shedding frequencies is studied and a critical spacing gap is revealed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A gauge principle is applied to mass flows of an ideal compressible fluid subject to Galilei transformation. A free-field Lagrangian defined at the outset is invariant with respeet to global SO(3) gauge transformations as well as Galilei transformations. The action principle leads to the equation of potential flows under constraint of a continuity equation. However, the irrotational flow is not invariant with respect to local SO(3) gauge transformations. According to the gauge principle, a gauge-covariant derivative is defined by introducing a new gauge field. Galilei invariance of the derivative requires the gauge field to coincide with the vorticity, i.e. the curl of the velocity field. A full gauge-covariant variational formulation is proposed on the basis of the Hamilton‘‘s principle and an assoicated Lagrangian. By means of an isentropic material variation taking into account individual particle motion, the Euler‘‘s equation of motion is derived for isentropic flows by using the covariant derivative. Noether‘‘s law associated with global SO(3) gauge invariance leads to the conservation of total angular momentum. In addition, the Lagrangian has a local symmetry of particle permutation which results in local conservation law equivalent to the vorticity equation.  相似文献   

16.
Flow characteristics in the near wake of a circular cylinder located close to a fully developed turbulent boundary layer are investigated experimentally using particle image velocimetry (PIV). The Reynolds number based on the cylinder diameter (D) is 1.2×104 and the incident boundary layer thickness (δ) is 0.4D. Detailed velocity and vorticity fields in the wake region (0<x/D<6) are given for various gap heights (S) between the cylinder and the wall, with S/D ranging from 0.1 to 1.0. Both the ensemble-averaged (including the mean velocity vectors and Reynolds stress) and the instantaneous flow fields are strongly dependent on S/D. Results reveal that for S/D⩾0.3, the flow is characterized by the periodic, Kármán-like vortex shedding from the upper and lower sides of the cylinder. The shed vortices and their evolution are revealed by analyzing the instantaneous flow fields using various vortex identification methods, including Galilean decomposition of velocity vectors, calculation of vorticity and swirling strength. For small and intermediate gap ratios (S/D⩽0.6), the wake flow develops a distinct asymmetry about the cylinder centreline; however, some flow quantities, such as the Strouhal number and the convection velocity of the shed vortex, keep roughly constant and virtually independent of S/D.  相似文献   

17.
For inviscid fluid flow in any n-dimensional Riemannian manifold, new conserved vorticity integrals generalizing helicity, enstrophy, and entropy circulation are derived for lower-dimensional surfaces that move along fluid streamlines. Conditions are determined for which the integrals yield constants of motion for the fluid. In the case when an inviscid fluid is isentropic, these new constants of motion generalize Kelvin’s circulation theorem from closed loops to closed surfaces of any dimension.  相似文献   

18.
We consider steady flow of an upper convected Maxwell fluid through a channel with wavy walls. The vorticity of this flow will change type when the velocity in the center of the channel is larger than a critical value defined by the propagation of shear waves. There is then a central region of the channel in which the vorticity equation is hyperbolic and a low speed region near the walls where the vorticity equation is elliptic. We linearize the problem for small amplitude waviness and the linearized problem is solved in detail. The characterstic nets depend on the viscoelastic “Mach” number which is the ratio (M = U/c) of the unperturbed maximum velocity U to the speed of shear waves c into the fluid at rest and the elasticity number E. There is a supercritical (hyperbolic) region around the center of the channel when M > 1. When M ? 1, the thickness of this hyperbolic region is small when E is large, and large when E is small. Regions of positive and negative vorticity are swept out along forward facing characteristics in the hyperbolic region. There is rapid damping of vorticity in the hyperbolic region away from the boundary when M ? 1 and the Weissenberg number
. (The Weissenberg number is proportional to the relaxation time of the fluid.)The rate of damping of vorticity decreases as W is increased. Flows with high M appear to be more “elastic” when W is large in the sense that the damping is suppressed as the relaxation time of the fluid is increased.  相似文献   

19.
A two‐dimensional inviscid incompressible flow in a rectilinear channel of finite length is studied numerically. Both the normal velocity and the vorticity are given at the inlet, and only the normal velocity is specified at the outlet. The flow is described in terms of the stream function and vorticity. To solve the unsteady problem numerically, we propose a version of the vortex particle method. The vorticity field is approximated using its values at a set of fluid particles. A pseudo‐symplectic integrator is employed to solve the system of ordinary differential equations governing the motion of fluid particles. The stream function is computed using the Galerkin method. Unsteady flows developing from an initial perturbation in the form of an elliptical patch of vorticity are calculated for various values of the volume flux of fluid through the channel. It is shown that if the flux of fluid is large, the initial vortex patch is washed out of the channel, and when the flux is reduced, the initial perturbation evolves to a steady flow with stagnation regions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The solution of the problem of fluid flow inside a cone with a small vertex angle is obtained in closed form. The conditions of occurrence of singular separation are considered within the framework of conical flow theory. A class of conical flows in which the vorticity is transported along streamlines of the potential velocity component is detected.Quasi-conical incompressible fluid flow, i.~e. a flow inside and outside an axisymmetric body with power-law generators is defined by analogy with supersonic compressible fluid flow. The conditions under which the effect of vorticity and swirling is significant are found as a result of an inspection analysis. An approximate solution of the problem of fluid flow inside a zero corner is found.A coordinate expansion representing a plane analog of conical flow is constructed in the neighborhood of the separation point of a creeping flow on a smooth surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号