首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
边增元 《力学进展》1990,20(2):145-158
热流体力学是一门涉及传热学、流体力学和热力学的交叉学科,并把重点放在讨论热过程对流体流动的影响。它由5部分组成:①热阻力。在某些情况下热阻力的存在对通道中的流体流量和换热系数有重大影响。借助于热阻力系数的定义和分析表达式,不仅可以预示单相通道流中的压力降,而且能用简便的方法预示气-液两相通道流中的压力降和临界热流。②热绕流。运用“虚质量源”和“热偶极子”的概念,对热绕流现象进行了分析和数值研究。它可在热除尘、粒子样品收集和热设备中流量分配等方面获得广泛的应用。③热驱动。不仅在重力场中,而且在如离心力场、表面张力场和电磁力场中也存在着热驱动流。着重讨论了流体运动的起因及其带来的后果,它包括环境污染、传热强化和同位素分离系数的提高等,④热不稳定性。重点讨论了热不稳定性的物理机理。用各种动力学方法所得到的流动不稳定性的临界准则对材料加工、热减阻、水源热污染等都是十分重要的。⑤热优化。研究了基于熵产生最小(热力学第二定律)为目标函数的流动和传热过程的优化。探讨了在一定条件下热力学第一定律效率和第二定律效率的内在联系。  相似文献   

2.
采用高频电控热激发汽泡的方式构造微通道人工泡状流,可以有效抑制微通道沸腾流动的不稳定性和强化传热。本文基于Lattice Boltzmann大密度比多相流复合模型,数值研究了通道内人工泡状流的流动和传热,通过比较分析不同发泡频率的泡状流,量化分析了汽泡运动和增长对微通道流动与传热的相互影响。一方面着重分析了汽泡运动对微通道运动边界层以及汽泡相变增长对热边界层的影响,另一方面也研究了边界层对汽泡动力行为的影响,所得结论对研究抑制微通道沸腾流动不稳定性和强化传热有参考意义。  相似文献   

3.
本文通过流动显示,热线测频和流体动载荷测量在水槽中研究了绕经不同柱间距比S/D(S为双柱间距,D为柱体截面宽)串列双方柱体流动特性。实验雷诺数为Re=6×10~3,柱间距比0.5≤S/D≤10实验测量了涡脱落频率、时间平均阻力、动态阻力和动态升力。通过实验结果综合分析给出临界柱间距范围2.5≤(S/D)_(cr)≤3.0,并将串列双方柱流动随柱间距的变化划分为二种流态区。在临界柱间距,作用于双柱体的流体载荷、涡脱落频率以及流谱都发生跃变。文中分析讨论了两个流态区的特性以及在临界柱间距出现的双稳态特性。  相似文献   

4.
基于浸入边界-格子Boltzmann通量求解法,开展了雷诺数Re=100不同几何参数下单椭圆柱及串列双椭圆柱绕流流场与受力特性对比研究。结果表明,随长短轴比值的增加,单椭圆柱绕流阻力系数先减小后缓慢上升,最大升力系数则随长短轴比值的增大而减小;尾迹流动状态从周期性脱落涡到稳定对称涡。间距是影响串列圆柱及椭圆柱流场流动状态的主要因素,间距较小时,串列圆柱绕流呈周期性脱落涡状态,而椭圆柱则为稳定流动;随着间距增加,上下游圆柱及椭圆柱尾迹均出现卡门涡街现象,且串列椭圆柱临界间距大于串列圆柱。串列椭圆柱阻力的变化规律与圆柱的基本相同,上游平均阻力大于下游阻力;上游椭圆柱阻力随着间距的变大先减小,下游随间距的变大而增加,当间距达到临界间距时上下游阻力跃升,随后出现小幅度波动再逐渐增加,并趋近于相同长短轴比值下单柱体绕流的阻力。  相似文献   

5.
基于浸入边界-格子Boltzmann通量求解法,开展了雷诺数Re=100不同几何参数下单椭圆柱及串列双椭圆柱绕流流场与受力特性对比研究。结果表明,随长短轴比值的增加,单椭圆柱绕流阻力系数先减小后缓慢上升,最大升力系数则随长短轴比值的增大而减小;尾迹流动状态从周期性脱落涡到稳定对称涡。间距是影响串列圆柱及椭圆柱流场流动状态的主要因素,间距较小时,串列圆柱绕流呈周期性脱落涡状态,而椭圆柱则为稳定流动;随着间距增加,上下游圆柱及椭圆柱尾迹均出现卡门涡街现象,且串列椭圆柱临界间距大于串列圆柱。串列椭圆柱阻力的变化规律与圆柱的基本相同,上游平均阻力大于下游阻力;上游椭圆柱阻力随着间距的变大先减小,下游随间距的变大而增加,当间距达到临界间距时上下游阻力跃升,随后出现小幅度波动再逐渐增加,并趋近于相同长短轴比值下单柱体绕流的阻力。  相似文献   

6.
1.本文讨论了环境流体力学的一般领域和这个研究课题的应用。2.在理论、计算、物理模拟和现场研究方面,评述了大气和海洋中流体流动的一些问题。因为它们对于环境问题实际上很重要。例如在表面层、混合层、空气流过粗糙度不断变化的表面和流体流过沙波或海湾岩床等情况下出现的分层效应。3.也讨论了人类活动和环境的相互作用产生的一些流体力学问题。例如作用在建筑物上的定常流动、振荡流动和旋涡流动的流体力(简略涉及波能);障碍物的绕流和下游流动(包括高层建筑物附近风对人的影响);空气中(包括稠密气体的影响)和水道中(也括“热”污染)污染物的扩散。   相似文献   

7.
流体力振动翼型和襟翼的绕流特性研究…李锋超薄膜磁头滑块气动力特性............……饱和非饱和土壤中溶质运移的数值模拟……半浮区液桥热毛细对流速度场特征.....……浮体直棱角附近流场的奇异性.........……后向台阶湍流拟序结构的实验研究.....……Y型柱体绕流特性及风荷载.........……,…崔尔杰征宁孙秦学王保育汪翼云.....……傅仙罗邱克俭戚隆溪解京昌唐泽眉....……朱林生胡文瑞戴遗山连淇祥顾志福低超声速圆球绕流后体流场的数值模拟……昊应湘扰动本构方程及粘弹流体拉伸流动不稳定性...……高速二元柔壁自适应风洞消除三元…  相似文献   

8.
???? 《力学与实践》1989,11(5):1-12
近壁流动或称粘性底层的流动是流体力学重要的研究课题之一,它关系到固体表面和流体之间传热、传质;流动阻力和人工减阻;以及边界层中湍流的猝发和发展等物理机理的研究.本文对本课题的研究现状做了较好的总结,并对今后近壁流动的研究工作提出了自己的看法.  相似文献   

9.
舒玮 《力学与实践》1989,11(5):1-5,12
近壁流动或称粘性底层的流动是流体力学重要的研究课题之一,它关系到固体表面和流体之间传热、传质;流动阻力和人工减阻;以及边界层中湍流的猝发和发展等物理机理的研究.本文对本课题的研究现状做了较好的总结,并对今后近壁流动的研究工作提出了自己的看法.  相似文献   

10.
会议由香港大学机械系承办。征文范围:边界层,射流和尾流,激波与流动相互作用,涡旋流,内部流,湍流和湍流模拟,非定常流;水力学和海岸工程;工业空气动力学,钝体和高耸建筑的绕流;多相流和非牛顿流;地球物理流体动力学,波,空气和水的污染;数值和计算流体力学;实验方法,仪器,数据收集和分析;传热传质,燃烧;流体-结构相互作   相似文献   

11.
This study paid attention to the effect of fluid temperatures on the forced convective flow drag and heat transfer characteristics of multi-wall carbon nanotube (MWNTs)-water suspensions without any surfactants. The experiments were carried out under the two fixed average fluid temperatures of 29 and 58°C. A horizontal small stainless steel tube with an inner diameter of 1.02 mm was used as the test section. The experiment results show that the flow drag characteristics of suspensions are almost the same as those of water. While the heat transfer of MWNTs suspensions with high mass concentration or high fluid temperature is significantly enhanced. The fluid temperature does not affect flow drag characteristics but has great effect on the heat transfer characteristics. Nanometer characteristics are presented by suspensions with high MWNT mass concentration or high temperature on convective heat transfer.  相似文献   

12.
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial computational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynamics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydrodynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton–Levenspiel, and a combination of Wen–Yu/Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and distribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations of a DFB system with CPFD.  相似文献   

13.
Unsteady flow and heat transfer from a horizontal isothermal square cylinder is studied numerically using a three-dimensional computational model to investigate the influence of buoyancy on the forced flow and heat transfer characteristics. The numerical model is based on a horizontal square cylinder subjected to laminar fluid flow in an unconfined channel. The governing equations in 3D form are solved using a fractional step method based on the finite difference discretization in addition to a Crank–Nicholson scheme employed to the convective and the viscous terms. Two working fluids–air (Pr = 0.7) and water (Pr = 7)–are considered, and the flow and heat transfer simulations were carried out for the Reynolds and Richardson numbers in the intervals 55 ≤ Re ≤ 250 and 0 ≤ Ri ≤ 2, respectively. The flow characteristics such as time-averaged drag/lift, rms drag/rms lift coefficients as well as Strouhal number were computed. The heat transfer from the cylinder is assessed by mean Nusselt number (and rms Nusselt number) over the total heated cylinder walls. As the buoyancy increases, the mass and the velocity of the fluid flowing underneath the cylinder increases. The fluid is injected into the near wake region with an upward motion which significantly alters the flow field in the downstream as well as upstream regions. The effects of Reynolds, Richardson and Prandtl numbers on the flow field and temperature distributions are discussed in detail. It is shown that the flow and heat transfer characteristics are influenced more for air than water. To fill the void in the literature, useful empirical correlations of practical importance are derived for pure forced and pure natural as well as mixed convection. The mixed convection correlations, in terms of the ratio of pure forced convection, are also developed, and their implications are discussed.  相似文献   

14.
The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in con-junction with heat transfer enhancement in particle-laden turbulent flows.The effects of particles on momentum and heat transfer are analyzed,and the possibility of drag reduc-tion in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed.We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow,which shows the heat transfer reduction when large inertial parti-cles with low specific heat capacity are added to the flow. However,we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved.The present results show that particles,which are active agents,interact not only with the velocity field,but also the temperature field and can cause a dissimilarity in momentum and heat transport.This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of par-ticles with different thermal properties.  相似文献   

15.
16.
The objective of the present study is to develop a novel similarity model for analysis of mixed convection heat and mas transfer in combined stagnation and rotation-induced flows over a rotating disk. Thermal and concentration (solutal) buoyancy effects stemmed from temperature and concentration gradients in rotational as well as gravitational forces fields are all taken into account. The influences of the forced flow, disk rotation, thermal buoyancy, buoyancy ratio and the fluid properties, i.e. Prandtl and Schmidt numbers, on the flow, temperature and concentration fields and the associated friction factors, heat and mass transfer rates are investigated. The present results reveal the effects of various buoyancy modes with combined forces on the transport phenomena in rotating-disk flows, and the analysis is also useful in understanding the mechanisms of mixed convection in the class of rotating fluids. Received on 30 December 1997  相似文献   

17.
Fluid flow and heat transfer around and through a porous cylinder is an important issue in engineering applications. In this paper a numerical study is carried out for simulating the fluid flow and forced convection heat transfer around and through a square diamond-shaped porous cylinder. The flow is two-dimensional, steady, and laminar. Conservation laws of mass, momentum, and heat transport equations are applied in the clear region and Darcy–Brinkman–Forchheimer model for simulating the flow in the porous medium has been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Reynolds and Darcy numbers are varied within the ranges of $1<Re<45$ and $10^{-6}<Da<10^{- 2}$ , respectively. The porosity $(\varepsilon )$ is 0.5. This paper presents the effect of Reynolds and Darcy numbers on the flow structure and heat transfer characteristics. Finally, these parameters are compared among solid and porous cylinder. It was found that the drag coefficient decreases and flow separation from the cylinder is delayed with increasing Darcy number. Also the size of the thermal plume decreases by decreasing Darcy number.  相似文献   

18.
With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.  相似文献   

19.
Thermal conduction which happens in all phases(liquid,solid,and gas) is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding particles comprise electrons,molecules,and atoms,and transfer disorganized microscopic potential and kinetic energy,mutually known as the internal energy.In engineering sciences,heat transfer comprises the processes of convection,thermal radiation,and sometimes mass transportation.Typically,more than one of these procedures may happen in a given circumstance.We use the Cattaneo-Christov(CC) heat flux model instead of the Fourier law of heat conduction to discuss the behavior of heat transportation.A mathematical model is presented for the Cattaneo-Christov double diffusion(CCDD) in the flow of a non-Newtonian nanofluid(the Jeffrey fluid) towards a stretched surface.The magnetohydrodynamic(MHD) fluid is considered.The behaviors of heat and mass transportation rates are discussed with the CCDD.These models are based on Fourier's and Fick's laws.The convective transportation in nanofluids is discussed,subject to thermophoresis and Brownian diffusions.The nonlinear governing flow expression is first altered into ordinary differential equations via appropriate transformations,and then numerical solutions are obtained through the built-in-shooting method.The impact of sundry flow parameters is discussed on the velocity,the skin friction coefficient,the temperature,and the concentration graphically.It is reported that the velocity of material particles decreases with higher values of the Deborah number and the ratio of the relaxation to retardation time parameter.The temperature distribution enhances when the Brownian motion and thermophoresis parameters increase.The concentration shows contrasting impact versus the Lewis number and the Brownian motion parameter.It is also noticed that the skin friction coefficient decreases when the ratio of the relaxation to retardation time parameter increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号