首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oscillations of a rigid body having a cavity partially filled with an ideal fluid have been studied in numerous reports, for example, [1–6]. Certain analogous problems in the case of a viscous fluid for particular shapes of the cavity were considered in [6, 7]. The general equations of motion of a rigid body having a cavity partially filled with a viscous liquid were derived in [8]. These equations were obtained for a cavity of arbitrary form under the following assumptions: 1) the body and the liquid perform small oscillations (linear approximation applicable); 2) the Reynolds number is large (viscosity is small). In the case of an ideal liquid the equations of [8] become the previously known equations of [2–6]. In the present paper, on the basis of the equations of [8], we study the free and the forced oscillations of a body with a cavity (vessel) which is partially filled with a viscous liquid. For simplicity we consider translational oscillations of a body with a liquid, since even in this case the characteristic mechanical properties of the system resulting from the viscosity of the liquid and the presence of a free surface manifest themselves.The solutions are obtained for a cavity of arbitrary shape. We then consider some specific cavity shapes.  相似文献   

2.
We consider the arbitrary motion of a circular cylinder in an ideal fluid near a vertical wall. This problem is usually solved in the approximate formulation with a degree of error which is difficult to assess, increasing with approach of the cylinder to the wall [1, 2], The exact solution has previously been carried out only for the case of purely circulatory flow about the cylinder [3].  相似文献   

3.
Several problems are known which are associated with the circular motion of a viscous incompressible fluid with a rotating cylinder[l, 2]. In the present paper we consider the case of unsteady circular motion of a viscous fluid with a cavity in the fluid.  相似文献   

4.
We consider the forced and the free oscillations of a liquid partially filling a cavity in the form of a rectangular parallelepiped. The characteristics of these oscillations are studied for small deformations of the free surface. It is shown that for definite frequencies and amplitudes of two-dimensional translational motions of the parallelepiped the fundamental of the liquid oscillations is excited in the plane perpendicular to the plane of motion of the vessel. The effect of small linear damping of the liquid oscillations on the shape of the boundaries of the principal region of instability of the liquid oscillations is evaluated. Fairly large oscillations of a liquid in a cylinder were considered in [1]. The same problem for a cavity of arbitrary configuration was studied in [2]. We note also that the conclusions of the study presented here are in qualitative agreement with the basic results obtained by a somewhat different method in [3] for a cavity in the form of a right circular cylinder.  相似文献   

5.
Some results are presented of an experimental determination of the hydrodynamic coefficients of the equations of the disturbed motion of a rigid body having a cavity in the form of a right circular cylinder with a flat bottom, which is partially filled with a liquid, for the case of radial baffles.  相似文献   

6.
The motion of a dumbbell-shaped body (a pair of massive points connected with each other by a weightless rod along which the elevator, i.e., a third point, is moving according to a given law) in an attractive Newtonian central field is considered. In particular, such a mechanical system can be considered as a simplified model of an orbital cable system equipped with an elevator. The practically most interesting case where the cabin performs periodic ??shuttle??motions is studied. Under the assumption that the elevator mass is small compared with the dumbbell mass, the Poincaré theory is used to determine the conditions for the existence of families of system periodic motions analytically depending on the arising small parameter and passing into some stable radial steady-state motion of the unperturbed problem as the small parameter tends to zero. It is also proved that, for sufficiently small parameter values, each of the radial relative equilibria generates exactly one family of such periodic motions. The stability of the obtained periodic solutions is studied in the linear approximation, and these solutions themselves are calculated up to terms of the firstorder in the small parameter. The contemporary studies of the motion of orbital dumbbell systems apparently originated in Okunev??s papers [1, 2]. These studies were continued in [3], where plane motions of an orbit tether (represented as a dumbbell-shaped satellite) in a circular orbit were considered in the satellite approximation. In [4], in the case of equal masses and in the unbounded statement, the energy-momentum method was used to perform the dynamic reduction of the problem and analyze the stability of relative equilibria. A similar technique was used in [5], where, in contrast to the above-mentioned problems, the massive points were connected by an elastic spring resisting to compression and forming a dumbbell with elastic properties. Under such assumptions, the stability of radial configurations was investigated in that paper. The bifurcations and stability of steady-state configurations of a deformable elastic dumbbell were also studied in [6]. Various obstacles arising in the construction of orbital cable systems, in particular, the strong deformability of known materials, were discussed in [7]. In [8], the problem of orbital motion of a pair of massive points connected by an inextensible weightless cable was considered in the exact statement. In other words, it was assumed that a unilateral constraint is imposed on themassive points. The conditions of stability of vertical positions of the relative equilibria of the cable system, which were obtained in [8], can be used for any ratio of the subsatellite and station masses. In turn, these results agree well with the results obtained earlier in the studies of stability of vertical configurations in the case of equal masses of the system end bodies [3, 4]. One of the basic papers in the dynamics of three-body orbital cable systems is the paper [9]. The steady-state motions and their bifurcations and stability were studied depending on the elevator cabin position in [10].  相似文献   

7.
The influence of vibrations of a cavity containing a fluid on the convective stability of the equilibrium has been investigated on a number of occasions [1]. The stability of convective flows in a modulated gravity field has not hitherto been studied systematically. There is only the paper of Baxi, Arpaci, and Vest [2], which contains fragmentary data corresponding to various values of the determining parameters of the problem. The present paper investigates the linear stability of convective flow in a vertical plane layer with walls at different temperatures in the presence of longitudinal harmonic vibrations of the cavity containing the fluid. It is assumed that the frequency of the vibrations is fairly high; the motion is described by the equations of the averaged convective motion. The stability boundaries of the flow with respect to monotonic perturbations in the region of Prandtl numbers 0 ? P ? 10 are determined. It is found that high-frequency vibrations have a destabilizing influence on the convective motion. At sufficiently large values of the vibration parameter, the flow becomes unstable at arbitrarily small values of the Grashof number, this being due to the mechanism of vibrational convection, which leads to instability even under conditions of weightlessness, when the main flow is absent [3, 4].  相似文献   

8.
Incompressible fluid flow with a linear relationship between the vorticity and the stream function past a circular cylinder is studied.Vortical flows about profiles have been considered in several studies [1–15], but in all these studies with the exception of [15] a constant vorticity was assumed (in [15] an approximate solution is found of the problem of incompressible fluid flow about a Zhukovskii profile with parabolic distribution of the velocities in the approaching stream).A freestream velocity profile similar to that considered below occurs, for example, in a planar jet (laminar or turbulent), in the wake behind a bluff body, in the boundary layer along an infinite plane [4,13], in turbulent jet flows with reverse fluid currents [16]. A similar situation also arises in the flow past an array of cylinders with large spacing which is located in the wake of another array.The author wishes to thank V. E. Davidson for posing the problem and for guidance in its solution.  相似文献   

9.
The problem of the motion of a cavity in a plane-parallel flow of an ideal liquid, taking account of surface tension, was first discussed in [1], in which an exact equation was obtained describing the equilibrium form of the cavity. In [2] an analysis was made of this equation, and, in a particular case, the existence of an analytical solution was demonstrated. Articles [3, 4] give the results of numerical solutions. In the present article, the cavity is defined by an infinite set of generalized coordinates, and Lagrange equations determining the dynamics of the cavity are given in explicit form. The problem discussed in [1–4] is reduced to the problem of seeking a minimum of a function of an infinite number of variables. The explicit form of this function is found. In distinction from [1–4], on the basis of the Lagrauge equations, a study is also made of the unsteady-state motion of the cavity. The dynamic equations are generalized for the case of a cavity moving in a heavy viscous liquid with surface tension at large Reynolds numbers. Under these circumstances, the steady-state motion of the cavity is determined from an infinite system of algebraic equations written in explicit form. An exact solution of the dynamic equations is obtained for an elliptical cavity in the case of an ideal liquid. An approximation of the cavity by an ellipse is used to find the approximate analytical dependence of the Weber number on the deformation, and a comparison is made with numerical calculations [3, 4]. The problem of the motion of an elliptical cavity is considered in a manner analogous to the problem of an ellipsoidal cavity for an axisymmetric flow [5, 6]. In distinction from [6], the equilibrium form of a flat cavity in a heavy viscous liquid becomes unstable if the ratio of the axes of the cavity is greater than 2.06.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 15–23, September–October, 1973.The author thanks G. Yu. Stepanov for his useful observations.  相似文献   

10.
The system of approximate nonlinear equations describing liquid oscillations in axisymmetric vessels is constructed. The equations are obtained for the case in which two coordinates belonging to the family of generalized coordinates characterizing the liquid motion are not small. This family is selected so that from the resulting nonlinear equations we can obtain as a particular case the nonlinear equations of [1–3], which are valid for the class of cylindrical vessels, and the requirements are satisfied that the resulting nonlinear equations correspond to the widely adopted linearized equations of liquid oscillations [4–6], Nonlinear equations are obtained which describe liquid oscillations in arbitrary vessels of rotation with radial baffles.  相似文献   

11.
The problem of equalizing the two dimensional flow of an incompressible fluid through a plane lattice of radial plates has been solved approximately by Mitrokhin [1]. In the following we present an approximate solution of the same problem for a cascade of thin curved blades which have a radial direction at the entrance. The bases of the proposed solution are the same assumptions as used in [1]. The formulas of Mitrokhin for the cascade of radial plates are a particular case which derives from the formulas obtained for the flow equalization radius and energy losses associated with separated flow.  相似文献   

12.
The problem of the vibrations of a body in a bounded volume of viscous fluid has been studied on a number of occasions [1–4]. The main attention has been devoted to determining the hydrodynamic characteristics of elements in the form of rods. Analytic solution of the problem is possible only in the simplest cases [2]. In the present paper, in which large Reynolds numbers are considered, the asymptotic method of Vishik and Lyusternik [5] and Chernous' ko [6] is used to consider the general problem of translational vibrations of an axisymmetric body in an axisymmetric volume of fluid. Equations of motion of the body and expressions for the coefficients due to the viscosity of the fluid are obtained. It is shown that in the first approximation these coefficients differ only by a constant factor and are completely determined if the solution to the problem for an ideal fluid is known. Examples are given of the determination of the “viscous” added mass and the damping coefficient for some bodies and cavities. In the case of an ideal fluid, general estimates are obtained for the added mass and also for the influence of nonlinearity. Ritz's method is used to solve the problem of longitudinal vibrations of an ellipsoid of revolution in a circular cylinder. The hydrodynamic coefficients have been determined numerically on a computer. The theoretical results agree well with the results of experimental investigations.  相似文献   

13.
The problem under consideration is that of the stationary shape of the free surface of a viscous fluid in a steadily rotating horizontal cylinder. In the majority of investigations of this problem the thickness of the fluid layer coating the inner surface of the cylinder is assumed to be small [1–3]. The case of a near-horizontal free surface, with the bulk of the fluid at the cylinder bottom, was considered in [4], where, after considerable simplification, the governing equations were reduced to ordinary differential equations. In the present study the behavior of the free surface is investigated using a creeping flow approximation. The controlling parameters vary over a wide range. In the numerical computations a boundary element method was used. The numerical results have been confirmed experimentally.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–30, May–June, 1993.  相似文献   

14.
The investigation of thermal convection in a closed cavity is of considerable interest in connection with the problem of heat transfer. The problem may be solved comparatively simply in the case of small characteristic temperature difference with heating from the side, when equilibrium is not possible and when slow movement is initiated for an arbitrarily small horizontal temperature gradient. In this case the motion may be studied using the small parameter method, based on expanding the velocity, temperature, and pressure in series in powers of the Grashof number—the dimensionless parameter which characterizes the intensity of the convection [1–4]. In the problems considered it has been possible to find only two or three terms of these series. The solutions obtained in this approximation describe only weak nonlinear effects and the region of their applicability is limited, naturally, to small values of the Grashof number (no larger than 103).With increase of the temperature difference the nature of the motion gradually changes—at the boundaries of the cavity a convective boundary layer is formed, in which the primary temperature and velocity gradients are concentrated; the remaining portion of the liquid forms the flow core. On the basis of an analysis of the equations of motion for the plane case, Batchelor [4] suggested that the core is isothermal and rotates with constant and uniform vorticity. The value of the vorticity in the core must be determined as the eigenvalue of the problem of a closed boundary layer. A closed convective boundary layer in a horizontal cylinder and in a plane vertical stratum was considered in [5, 6] using the Batchelor scheme. The boundary layer parameters and the vorticity in the core were determined with the aid of an integral method. An attempt to solve the boundary layer equations analytically for a horizontal cylinder using the Oseen linearization method was made in [7].However, the results of experiments in which a study was made of the structure of the convective motion of various liquids and gases in closed cavities of different shapes [8–13] definitely contradict the Batchelor hypothesis. The measurements show that the core is not isothermal; on the contrary, there is a constant vertical temperature gradient directed upward in the core. Further, the core is practically motionless. In the core there are found retrograde motions with velocities much smaller than the velocities in the boundary layer.The use of numerical methods may be of assistance in clarifying the laws governing the convective motion in a closed cavity with large temperature differences. In [14] the two-dimensional problem of steady air convection in a square cavity was solved by expansion in orthogonal polynomials. The author was able to progress in the calculation only to a value of the Grashof numberG=104. At these values of the Grashof numberG the formation of the boundary layer and the core has really only started, therefore the author's conclusion on the agreement of the numerical results with the Batchelor hypothesis is not justified. In addition, the bifurcation of the central isotherm (Fig. 3 of [14]), on the basis of which the conclusion was drawn concerning the formation of the isothermal core, is apparently the result of a misunderstanding, since an isotherm of this form obviously contradicts the symmetry of the solution.In [5] the method of finite differences is used to obtain the solution of the problem of strong convection of a gas in a horizontal cylinder whose lateral sides have different temperatures. According to the results of the calculation and in accordance with the experimental data [9], in the cavity there is a practically stationary core. However, since the authors started from the convection equations in the boundary layer approximation they did not obtain any detailed information on the core structure, in particular on the distribution of the temperature in the core.In the following we present the results of a finite difference solution of the complete nonlinear problem of plane convective motion in a square cavity. The vertical boundaries of the cavity are held at constant temperatures; the temperature varies linearly on the horizontal boundaries. The velocity and temperature distributions are obtained for values of the Grashof number in the range 0<G4·105 and for a value of the Prandtl number P=1. The results of the calculation permit following the formation of the closed boundary layer and the very slowly moving core with a constant vertical temperature gradient. The heat flux through the cavity is found as a function of the Grashof number.  相似文献   

15.
Dynamic equations have been obtained for the two-point double correlations of the fluctuation velocities of a fluid and the particles suspended in it at low volume concentrations of the solid phase. In the case of uniform isotropic turbulence these equations can be considerably simplified. The final period of decay of isotropic turbulence has been studied in detail. At this stage in the case of high-inertia particles the inhomogeneous-fluid turbulence is similar to the turbulence of a homogeneous fluid (without particles) in the sense that the presence of the particles affects only the fluctuation energy but leaves unchanged the spatial scales of turbulence and the spatial energy spectrum function. The suspended particles lead to exponential damping of the turbulent pulsations.Little theoretical information is available on the hydrodynamics of a suspension of fine particles in a turbulent liquid or gas. Research has been mainly confined to the behavior of the individual particles in a given turbulence field [1]. The problem of the turbulent motion of the mixture as a whole has been examined by Barenblatt [2], who derived the equations of motion of the mixture, using Kolmogorov's hypothesis to close them. Hinze [3] has also attempted to derive equations for turbulent pulsations of the mixture. However, as Murray showed [4], Hinze' s equations contradict Newton' s third law.The effect of suspended particles on the turbulence of a two-phase flow is governed by the noncorrespondence of the local velocities of the particles and the medium. The forces of resistance to the motion of the particles relative to the fluid lead to additional dissipation of fluctuation energy and decay of turbulence [2]. On the other hand, if the averaged velocities of particles and medium do not correspond, the suspended particles may also have a destabilizing effect [5, 6], causing energy transfer from the averaged to the pulsating motion. Below we shall consider the case where the averaged velocities of the two phases coincide, i.e., we shall deal only with the first of the two above-mentioned effects.The authors thank G.I. Barenblatt for his useful advice.  相似文献   

16.
The paper presents an analysis of laminar flow of a film of viscoelastic fluid flowing under gravity down an infinite inclined plane. It is assumed that the mechanical behavior of the fluid can be represented by a generalized Maxwell model, whose constitutive equation contains a time derivative of the deviator of the stress tensor in the Jaumann sense [1. 2]. The equations of motion of the viscoelastic fluid considered here admit an exact solution for the case of rectilinear laminar flow with a plane free boundary. The stability of this flow with respect to surface waves is investigated by the method of successive approximations described in [3, 4].  相似文献   

17.
Mikishev  G. N.  Stolbetsov  V. I. 《Fluid Dynamics》1984,19(2):200-205
Vibrations of bodies in confined viscous fluids have been studied on a number of occasions, transverse vibrations of rods being the main subject of investigation [1–3]. The present authors [4] have considered the general problem of translational vibrations of an axisymmetric body in an axisymmetric region containing a low-viscosity fluid. The present paper follows the same approach and considers the problem of small angular vibrations of an ellipsoid of revolution in a circular cylinder with flat ends. In the general case, the hydrodynamic coefficients in the equation of motion of the ellipsoid are determined numerically for different values of the dimensionless geometrical parameters using Ritz's method. In the case of an unconfined fluid, analytic dependences in terms of elementary functions are obtained for the hydrodynamic coefficients. The theoretical results agree well with experimental investigations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 34–39, March–April, 1984.  相似文献   

18.
The dynamics of a spherical cavity in a non-Newtonian fluid, described by the Reiner-Rivlin rheological equation [1], is investigated. The equation of radial cavity motion is obtained, where the gas in the cavity is subject to a polytropic law and surface tension is taken into account. The equation of cavity motion is solved numerically for a number of values of the transverse viscosity coefficient. The influence of the transverse viscosity on the collapse process of vapor and gas-filled cavities is shown. Numerical computations are also carried out for the rate of energy dissipation and the pressure distribution in the fluid.Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 170–173, July–August, 1973.The authors are grateful to A. T. Listrove for attention to the research.  相似文献   

19.
The first studies on the stability of nonstationary motions of a liquid with a free boundary were published relatively recently [1–4]. Investigations were conducted concerning the stability of flow in a spherical cavity [1, 2], a spherical shell [3], a strip, and an annulus of an ideal liquid. In these studies both the fundamental motion and the perturbed motion were assumed to be potential flow. Changing to Lagrangian coordinates considerably simplified the solution of the problem. Ovsyannikov [5], using Lagrangian coordinates, obtained equations for small potential perturbations of an arbitrary potential flow. The resulting equations were used for solving typical examples which showed the degree of difficulty involved in the investigation of the stability of nonstationary motions [5–8]. In all of these studies the stability was characterized by the deviation of the free boundary from its unperturbed state, i.e., by the normal component of the perturbation vector. In the present study we obtain general equations for small perturbations of the nonstationary flow of a liquid with a free boundary in Lagrangian coordinates. We find a simple expression for the normal component of the perturbation vector. In the case of potential mass forces the resulting system reduces to a single equation for some scalar function with an evolutionary condition on the free boundary. We prove an existence and uniqueness theorem for the solution, and, in particular, we answer the question of whether the linear problem concerning small potential perturbations which was formulated in [5] is correct. We investigate two examples for stability: a) the stretching of a strip and b) the compression of a circular cylinder with the condition that the initial perturbation is not of potential type.  相似文献   

20.
The problem of the flow of a viscoplastic medium with linear viscosity, resulting from the motion of a rigid cylinder of arbitrary cross section has been considered by Oldroyd [1]. In [2] the author finds several exact particular solutions of this problem. Problems of a similar nature have also been examined in [3–4], In the following we consider the formation of stagnant zones in viscoplastic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号