首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chang and Slattery (1986, 1988b) introduced a simplified model of dispersion that contains only two empirical parameters. The traditional model of dispersion (Nikolaevskii, 1959; Bear, 1961; Scheidegger, 1961; de Josselin de Jong and Bossen, 1961; Peaceman, 1966; Bear, 1972) has three empirical parameters, two of which can be measured in one-dimensional experiments while the third, the transverse dispersivity, must be measured in experiments in which a two-dimensional concentration profile develops. It is found that nearly the same linear stability behavior results from using either model.  相似文献   

2.
Based on Huang's accurate tri-sectional nonlin- ear kinematic equation (1997), a dimensionless simplified mathematical model for nonlinear flow in one-dimensional semi-infinite long porous media with low permeability is presented for the case of a constant flow rate on the inner boundary. This model contains double moving boundaries, including an internal moving boundary and an external mov- ing boundary, which are different from the classical Stefan problem in heat conduction: The velocity of the external moving boundary is proportional to the second derivative of the unknown pressure function with respect to the distance parameter on this boundary. Through a similarity transfor- mation, the nonlinear partial differential equation (PDE) sys- tem is transformed into a linear PDE system. Then an ana- lytical solution is obtained for the dimensionless simplified mathematical model. This solution can be used for strictly checking the validity of numerical methods in solving such nonlinear mathematical models for flows in low-permeable porous media for petroleum engineering applications. Finally, through plotted comparison curves from the exact an- alytical solution, the sensitive effects of three characteristic parameters are discussed. It is concluded that with a decrease in the dimensionless critical pressure gradient, the sensi- tive effects of the dimensionless variable on the dimension- less pressure distribution and dimensionless pressure gradi- ent distribution become more serious; with an increase in the dimensionless pseudo threshold pressure gradient, the sensi- tive effects of the dimensionless variable become more serious; the dimensionless threshold pressure gradient (TPG) has a great effect on the external moving boundary but has little effect on the internal moving boundary.  相似文献   

3.
A new formulation is presented for the modeling of immiscible compressible two-phase flow in porous media taking into account gravity, capillary effects, and heterogeneity. The formulation is intended for the numerical simulation of multidimensional flows and is fully equivalent to the original equations, contrary to the one introduced in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986). The main feature of this formulation is the introduction of a global pressure. The resulting equations are written in a fractional flow formulation and lead to a coupled system which consists of a nonlinear parabolic (the global pressure equation) and a nonlinear diffusion–convection one (the saturation equation) which can be efficiently solved numerically. A finite volume method is used to solve the global pressure equation and the saturation equation for the water and gas phase in the context of gas migration through engineered and geological barriers for a deep repository for radioactive waste. Numerical results for the one-dimensional problem are presented. The accuracy of the fully equivalent fractional flow model is demonstrated through comparison with the simplified model already developed in Chavent and Jaffré (Mathematical Models and Finite Elements for Reservoir Simulation, 1986).  相似文献   

4.
《力学快报》2020,10(4):213-223
Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines. Friction factors play an important role in the accurate calculation of pressure drop. Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall, gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions. In this paper by modification of a friction model available in the literature, an improved semiempirical model is proposed. The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved. Pressure gradient and velocity profiles are validated against experimental data. Using the improved model, the pressure gradient deviation from experiments diminishes by about 3%; the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.  相似文献   

5.
Viscous fingering and gravity tonguing are the consequences of an unstable miscible displacement. Chang and Slattery (1986) performed a linear stability analysis for a miscible displacement considering only the effect of viscosity. Here the effect of gravity is included as well for either a step change or a graduated change in concentration at the injection face during a downward, vertical displacement. If both the mobility ratio and the density ratio are favorable (the viscosity of the displacing fluid is greater than the viscosity of the displaced fluid and, for a downward vertical displacement, the density of the displacing fluid is less than the density of the displaced fluid), the displacement will be stable. If either the mobility ratio or the density ratio is unfavorable, instabilities can form at the injection boundary as the result of infinitesimal perturbations. But if the concentration is changed sufficiently slowly with time at the entrance to the system, the displacement can be stabilized, even if both the mobility ratio and the density ratio are unfavorable. A displacement is more likely to be stable as the aspect ratio (ratio of thickness to width, which is assumed to be less than one) is increased. Commonly the laboratory tests supporting a field trial use nearly the same fluids, porous media, and displacement rates as the field trial they are intended to support. For the laboratory test, the aspect ratio may be the order of one; for the field trial, it may be two orders of magnitude smaller. This means that a laboratory test could indicate that a displacement was stable, while an unstable displacement may be observed in the field.  相似文献   

6.
The smoothed finite element method (SFEM), which was recently introduced for solving the mechanics and acoustic problems, uses the gradient smoothing technique to operate over the cell‐based smoothing domains. On the basis of the previous work, this paper reports a detailed analysis on the numerical dispersion error in solving two‐dimensional acoustic problems governed by the Helmholtz equation using the SFEM, in comparison with the standard finite element method. Owing to the proper softening effects provided naturally by the cell‐based gradient smoothing operations, the SFEM model behaves much softer than the standard finite element method model. Therefore, the SFEM can significantly reduce the dispersion error in the numerical solution. Results of both theoretical and numerical experiments will support these important findings. It is shown clearly that the SFEM suits ideally well for solving acoustic problems, because of the crucial effectiveness in reducing the dispersion error. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
气流作用下同轴带电射流的不稳定性研究   总被引:2,自引:0,他引:2  
李帅兵  杨睿  罗喜胜  司廷 《力学学报》2017,49(5):997-1007
通过对气体驱动同轴电流动聚焦的实验模型进行简化,开展了电场力和惯性力共同作用下同轴带电射流的不稳定性理论研究.在流动为无黏、不可压缩、无旋的假设下,建立了三层流体带电射流物理模型并得到了扰动在时间域内发展演化的解析形式色散关系,利用正则模方法求解色散方程发现了流动的不稳定模态,进而分析了主要控制参数对不稳定模态的影响.结果表明,在参考状态下轴对称模态的最不稳定增长率最大,因此轴对称扰动控制整个流场.外层气流速度越高,气体惯性力越大,射流的界面越容易失稳.内外层液-液同轴射流之间的速度差越大,射流越不稳定.表面张力对射流不稳定性起到促进作用.轴向电场对射流不稳定性具有双重影响:当加载电场强度较小时,射流不稳定性被抑制;当施加电压大于某一临界值时,轴向电场会促进射流失稳.临界电压的大小与界面上自由电荷密度和射流表面扰动发展关系密切.这些结果与已有的实验现象吻合,能够对实验的过程控制提供理论指导.  相似文献   

8.
马小舟  董国海  滕斌 《力学学报》2006,38(6):760-766
从欧拉方程出发,提供了另一种推导完全非线性Boussinesq方程的方法,并对方程的 线性色散关系和线性变浅率进行了改进. 改进后方程的线性色散关系达到了一阶Stokes波 色散关系的Pad\'{e}[4,4]近似,在相对水深达1.0的强色散波浪时仍保持较高的准确性,并且方程的非线性和线性 变浅率都得到了不同程度的改善. 方程的水平一维形式用预估-校正的有限差分格式求解, 建立了一个适合较强非线性波浪的Boussinesq波浪数值模型. 作为验证,模拟了波浪在潜 堤上的传播变形,计算结果和实验数据的比较发现两者符合良好.  相似文献   

9.
We present a finite element (FEM) simulation method for pore geometry fluid flow. Within the pore space, we solve the single-phase Reynold’s lubrication equation—a simplified form of the incompressible Navier–Stokes equation yielding the velocity field in a two-step solution approach. (1) Laplace’s equation is solved with homogeneous boundary conditions and a right-hand source term, (2) pore pressure is computed, and the velocity field obtained for no slip conditions at the grain boundaries. From the computed velocity field, we estimate the effective permeability of porous media samples characterized by section micrographs or micro-CT scans. This two-step process is much simpler than solving the full Navier–Stokes equation and, therefore, provides the opportunity to study pore geometries with hundreds of thousands of pores in a computationally more cost effective manner than solving the full Navier–Stokes’ equation. Given the realistic laminar flow field, dispersion in the medium can also be estimated. Our numerical model is verified with an analytical solution and validated on two 2D micro-CT scans from samples, the permeabilities, and porosities of which were pre-determined in laboratory experiments. Comparisons were also made with published experimental, approximate, and exact permeability data. With the future aim to simulate multiphase flow within the pore space, we also compute the radii and derive capillary pressure from the Young–Laplace’s equation. This permits the determination of model parameters for the classical Brooks–Corey and van-Genuchten models, so that relative permeabilities can be estimated.  相似文献   

10.
11.
针对传统正方形蜂窝,通过用更小的双向内凹结构胞元替代原蜂窝材料的结构节点,得到了一种具有负泊松比特性的节点层级蜂窝材料模型。利用显式动力有限元方法,研究了冲击荷载作用下该负泊松比蜂窝结构的动力学响应及能量吸收特性。研究结果表明,除了冲击速度和相对密度,负泊松比蜂窝材料的动力学性能亦取决于胞元微结构。与正方形蜂窝相比,该负泊松比层级蜂窝材料的动态承载能力和能量吸收能力明显增强。在中低速冲击下,试件表现为拉胀材料明显的"颈缩"现象,并展示出负泊松比材料独特的平台应力增强效应。基于能量吸收效率方法和一维冲击波理论,给出了负泊松比蜂窝材料的密实应变和动态平台应力的经验公式,以预测该蜂窝材料的动态承载能力。本文的研究将为负泊松比多胞材料冲击动力学性能的多目标优化设计提供新的设计思路。  相似文献   

12.
We present an identification procedure based on a version of the de Saint-Venant semi-inverse method for transferring constitutive information from a two-dimensional Cauchy continuum model to a one-dimensional affine rod model of a two-dimensional slender body. To test and evaluate the accuracy of the identification procedure proposed, we compare the dispersion and frequency curves predicted by the two models for an isotropic material and for an anisotropic one.  相似文献   

13.
The Modeling of Velocity Enhancement in Polymer Flooding   总被引:1,自引:0,他引:1  
In single-phase polymer flooding experiments it has repeatedly been observed that the average velocity of the polymer molecules is higher than the average velocity of the water molecules. This effect is incorporated in many conventional Enhanced Oil Recovery (EOR) simulators by the introduction of a constant velocity enhancement factor. In this paper we show that, in absence of dispersion, a constant enhancement factor in the mathematical model for two-phase polymer flow (Buckley--Leverett displacement) leads to ill-posedness of the model equations. We propose a saturation dependent enhancement factor, derived from a model based on percolation concepts, for which this problem does not occur.  相似文献   

14.
A scale-similarity model of a two-point two-time Lagrangian velocity correlation(LVC) was originally developed for the relative dispersion of tracer particles in isotropic turbulent flows(HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80, 066313(2009)). The model can be expressed as a two-point Eulerian space correlation and the dispersion velocity V. The dispersion velocity denotes the rate at which one moving particle departs from another fixed particle. This paper numerically validates the robustness of the scale-similarity model at high Taylor micro-scale Reynolds numbers up to 373, which are much higher than the original values(R_λ = 66, 102). The effect of the Reynolds number on the dispersion velocity in the scale-similarity model is carefully investigated. The results show that the scale-similarity model is more accurate at higher Reynolds numbers because the two-point Lagrangian velocity correlations with different initial spatial separations collapse into a universal form compared with a combination of the initial separation and the temporal separation via the dispersion velocity.Moreover, the dispersion velocity V normalized by the Kolmogorov velocity V_η≡η/τ_η in which η and τ_η are the Kolmogorov space and time scales, respectively, scales with the Reynolds number R_λ as V/V_η∝ R_λ~(1.39) obtained from the numerical data.  相似文献   

15.
杨洪升  李玉龙  周风华 《力学学报》2019,51(6):1820-1829
在应力波传播过程中,几何弥散效应往往难以避免.对应力波在弹性杆中传播的几何弥散效应进行解析分析,对于基础波动问题研究以及材料动态力学行为表征等课题,显得至关重要.本文简单说明了弹性杆中考虑横向惯性修正的一维 Rayleigh-Love应力波理论,概述了其波动控制方程的变分法推导过程;针对 Hopkinson杆实验中常用的梯形应力加载脉冲,建立了相应的偏微分方程初边值问题的求解模型,并运用 Laplace变换方法研究了脉冲在杆中传播的几何弥散现象;根据留数定理进行 Laplace反变换,给出了杆中不同位置和时刻的应力波的级数形式解析解,分析了计算项数对结果收敛性的影响;将解析计算结果与采用三维有限元数值模拟的计算结果进行对比,两者吻合程度良好,从而证明 Rayleigh-Love横向惯性修正理论可以有效地表征典型 Hopkinson杆实验中的几何弥散效应.在此基础上围绕梯形加载脉冲的弥散效应进行参数研究,定量描述了传播距离、泊松比、脉冲斜率等参数的影响.本文给出的 Rayleigh-Love杆在梯形加载条件下的解析解,揭示了几何弥散效应的本质规律,可以用于实际实验的弥散修正过程.   相似文献   

16.
Dimensional reduction is applied to derive a one-dimensional energy functional governing tensile necking localization in a family of initially uniform prismatic solids, including as particular cases rectilinear blocks in plane strain and cylindrical bars undergoing axisymmetric deformations. The energy functional depends on both the axial stretch and its gradient. The coefficient of the gradient term is derived in an exact and general form. The one-dimensional model is used to analyze necking localization for nonlinear elastic materials that experience a maximum load under tensile loading, and for a class of nonlinear materials that mimic elastic-plastic materials by displaying a linear incremental response when stretch switches from increasing to decreasing. Bifurcation predictions for the onset of necking from the simplified theory compared with exact results suggest the approach is highly accurate at least when the departures from uniformity are not too large. Post-bifurcation behavior is analyzed to the point where the neck is fully developed and localized to a region on the order of the thickness of the block or bar. Applications to the nonlinear elastic and elastic-plastic materials reveal the highly unstable nature of necking for the former and the stable behavior for the latter, except for geometries where the length of the block or bar is very large compared to its thickness. A formula for the effective stress reduction at the center of a neck is established based on the one-dimensional model, which is similar to that suggested by Bridgman (1952).  相似文献   

17.
Experiments have been fired in which the HMX-based explosive EDC37 was subjected to one-dimensional shocks generated by plate impact. The response of the explosive to sustained shocks, double shocks and a short-pulse shock was monitored using embedded particle velocity gauges and shock tracker gauges. The final stages of the growth to detonation process were similar for all of the different input profiles. A strong reactive wave grows and accelerates to overtake and dominate the initial shock. It is shown that the curves showing the growth of the shock and the reactive wave in the sustained shock experiments can be normalised to give universal curves. These curves provides a reference against which to compare the explosive's response, not only to single sustained shocks, but also to double shock and short-pulse inputs. The treatment provides an empirical route for predicting the effects of sustained and more complex shocks on EDC37. PACS 47.40.-x; 82.33.Vx  相似文献   

18.
It is well‐known that the traditional finite element method (FEM) fails to provide accurate results to the Helmholtz equation with the increase of wave number because of the ‘pollution error’ caused by numerical dispersion. In order to overcome this deficiency, a gradient‐weighted finite element method (GW‐FEM) that combines Shepard interpolation and linear shape functions is proposed in this work. Three‐node triangular and four‐node tetrahedral elements that can be generated automatically are first used to discretize the problem domain in 2D and 3D spaces, respectively. For each independent element, a compacted support domain is then formed based on the element itself and its adjacent elements sharing common edges (or faces). With the aid of Shepard interpolation, a weighted acoustic gradient field is then formulated, which will be further used to construct the discretized system equations through the generalized Galerkin weak form. Numerical examples demonstrate that the present algorithm can significantly reduces the dispersion error in computational acoustics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The aim of the present work is to understand the aerodynamic phenomena and the vortex topology of an unsteady flapping motion by means of numerical and experimental methods. Instead of the use of real insect/bird wing geometries and kinematics which are highly complex and difficult to imitate by an exact modeling, a simplified model is used in order to understand the unsteady aerodynamics and vortex formation mechanisms during the different phases of the flapping motion. The flow is assumed to be laminar with a Reynolds number of 1,000. Direct numerical simulations, laser sheet visualizations and particle image velocimetry (PIV) measurements are performed for the phenomenological analysis of the flow. The vortex dynamics and their identification are put in evidence with PIV measurements by considering velocity magnitude, streamlines, second invariant of velocity gradient (Q-criteria), vorticity contours and Eurlerian accelerations.  相似文献   

20.
The existence of a secondary discontinuity at the rear of a detonation front shown in experiments by Peraldi and Veyssiere (1986) in stoichiometric hydrogen-oxygen mixtures with suspended 20-m starch particles has not been explained satisfactorily. Recently Veyssiere et al. (1997) analyzed these results using a one-dimensional (1-D) numerical model, and concluded that the heat release rate provided by the burning of starch particles in gaseous detonation products is too weak to support a double-front detonation (DFD), in contrast to the case of hybrid mixtures of hydrogen-air with suspended aluminium particles in which a double-front detonation structure was observed by Veyssiere (1986). A two-dimensional (2-D) numerical model was used in the present work to investigate abovementioned experimental results for hybrid mixtures with starch particles. The formation and propagation of the detonation has been examined in the geometry similar to the experimental tube of Peraldi and Veyssiere (1986), which has an area change after 2 m of propagation from the ignition point from a 69 mm dia. section to a 53 mm 53 mm square cross section corresponding to a 33% area contraction. It is shown that the detonation propagation regime in these experiments has a different nature from the double-front detonation observed in hybrid mixtures with aluminium particles. The detonation propagates as a pseudo-gas detonation (PGD) because starch particles release their heat downstream of the CJ plane giving rise to a non-stationary compression wave. The discontinuity wave at the rear of the detonation front is due to the interaction of the leading detonation front with the tube contraction, and is detected at the farthest pressure gauge location because the tube length is insufficient for the perturbation generated by the tube contraction to decay. Thus, numerical simulations explain experimental observations made by Peraldi and Veyssiere (1986). Received 5 July 1997 / Accepted 13 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号