首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A p‐adaptive hybridizable discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high‐order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, whereas the particular choice of the numerical fluxes opens the path to a superconvergent postprocessed solution. This superconvergent postprocessed solution is used to construct a simple and inexpensive error estimator. The error estimator is employed to obtain solutions with the prescribed accuracy in the area (or areas) of interest and also drives a proposed iterative mesh adaptation procedure. The proposed method is applied to a nonhomogeneous scattering problem in an unbounded domain. This is a challenging problem because, on the one hand, for high frequencies, numerical difficulties are an important issue because of the loss of the ellipticity and the oscillatory behavior of the solution. And on the other hand, it is applied to real harbor agitation problems. That is, the mild slope equation in frequency domain (Helmholtz equation with nonconstant coefficients) is solved on real geometries with the corresponding perfectly matched layer to damp the diffracted waves. The performance of the method is studied on two practical examples. The adaptive hybridizable discontinuous Galerkin method exhibits better efficiency compared with a high‐order continuous Galerkin method using static condensation of the interior nodes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
本文构建了声压波动方程的改进时域间断Galerkin有限元方法.传统时域连续有限元方法在计算高梯度、强间断特征水中声波传播问题时往往会出现虚假数值振荡现象,这些数值振荡会影响正常波动的计算精度.为了解决这一问题,本文通过引入人工阻尼的方式构建了改进的时域间断Galerkin有限元方法,并针对具有高梯度、强间断特征的多障碍物复杂边界和层合液体介质声传播问题进行了计算.计算结果表明,与传统时域连续方法如N ew mark方法计算结果对比,所发展方法能较好地消除高梯度和强间断声压力波传播过程中虚假的数值振荡,具有较高的计算精度.问题的求解为进一步流固声耦合问题的研究奠定了基础.  相似文献   

3.
In this paper, we develop a coupled continuous Galerkin and discontinuous Galerkin finite element method based on a split scheme to solve the incompressible Navier–Stokes equations. In order to use the equal order interpolation functions for velocity and pressure, we decouple the original Navier–Stokes equations and obtain three distinct equations through the split method, which are nonlinear hyperbolic, elliptic, and Helmholtz equations, respectively. The hybrid method combines the merits of discontinuous Galerkin (DG) and finite element method (FEM). Therefore, DG is concerned to accomplish the spatial discretization of the nonlinear hyperbolic equation to avoid using the stabilization approaches that appeared in FEM. Moreover, FEM is utilized to deal with the Poisson and Helmholtz equations to reduce the computational cost compared with DG. As for the temporal discretization, a second‐order stiffly stable approach is employed. Several typical benchmarks, namely, the Poiseuille flow, the backward‐facing step flow, and the flow around the cylinder with a wide range of Reynolds numbers, are considered to demonstrate and validate the feasibility, accuracy, and efficiency of this coupled method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The flow of ionized gases under the influence of electromagnetic fields is governed by the coupled system of the compressible flow equations and the Maxwell equations. In this system, coupling of the flow with the electromagnetic field is obtained through nonlinear and stiff source terms, which may cause difficulties with the numerical solution of the coupled system. The discontinuous Galerkin finite element method is used for the numerical solution of this system. For the magnetic field vector, discontinuous Galerkin discretization is performed using a divergence‐free vector base for the magnetic field to preserve zero divergence in the element and retain the implicit constraint of a divergence‐free magnetic field vector down to very low level both globally and locally. To circumvent difficulties resulting from the presence of the stiff source terms, implicit time marching is used for the fully coupled system to avoid wrong wave shapes and propagation speeds that are obtained when the coupling source terms are lagged in time or by using splitting iterative schemes. Numerical solutions for benchmark problems computed on collocated meshes for the flow and electromagnetic field variables with this fully coupled monolithic approach showed good agreement with other numerical solutions and exact results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The Runge-Kutta discontinuous Galerkin method together with a refined real-ghost fluid method is incorporated into an adaptive mesh refinement environment for solving compressible multifluid flows, where the level set method is used to capture the moving material interface. To ensure that the Riemann problem is exactly along the normal direction of the material interface, a simple and efficient modification is introduced into the original real-ghost fluid method for constructing the interfacial Riemann problem, and the initial conditions of the Riemann problem are obtained directly from the solution polynomials of the discontinuous Galerkin finite element space. In addition, a positivity-preserving limiter is introduced into the Runge-Kutta discontinuous Galerkin method to suppress the failure of preserving positivity of density or pressure for the problems involving strong shock wave or shock interaction with material interface. For interfacial cells in adaptive mesh refinement, the data transfer between different grid levels is achieved by using a L2 projection approach along with the least squares fitting. Various numerical cases, including multifluid shock tubes, underwater explosions, and shock-induced collapse of a underwater air bubble, are computed to assess the capability of the present adaptive positivity-preserving RKDG-GFM approach, and the simulated results show that the present approach is quite robust and can provide relatively reasonable results across a wide variety of flow regimes, even for problems involving strong shock wave or shock wave impacting high acoustic impedance mismatch material interface.  相似文献   

6.
In our previous research, the modified Galerkin method was proposed as one of the most efficient methods for the analyses of convection-diffusion problems and two-dimensional viscous fluid flow problems. In this modified Galerkin method, the inertia term is considered explicitly, so only the symmetrical matrixes appear. Then an artificial viscosity is introduced through an error analysis approach to improve its accuracy and stability. In this paper, we proposed a new finite element formulation for three-dimensional incompressible viscous fluid flow analysis. This formulation (‘MS’ algorithm and ‘MSR’ algorithm) is based on the modified Galerkin method coupled with the Semi-Implicit Method for Pressure-Linked Equations. The cubic cavity flow problems were investigated for the Reynolds number of 400, 1,000, 2,000 and 3,200 using non-uniform meshes. Finally, we confirmed the effectiveness of our proposed method through the comparison with other research works.  相似文献   

7.
A second-order radiation boundary condition (RBC) is derived for 2D shallow water problems posed in ‘wave equation’ form and is implemented within the Galerkin finite element framework. The RBC is derived by matching the dispersion relation for the interior wave equation with an approximate solution to the exterior problem for outgoing waves. The matching is correct to second order, accounting for curvature of the wave front and the geometry. Implementation is achieved by using the RBC as an evolution equation for the normal gradient on the boundary, coupled through the natural boundary integral of the Galerkin interior problem. The formulation is easily implemented on non-straight, unstructured meshes of simple elements. Test cases show fidelity to solutions obtained on extended meshes and improvement relative to simpler first-order RBCs.  相似文献   

8.
With high‐order methods becoming more widely adopted throughout the field of computational fluid dynamics, the development of new computationally efficient algorithms has increased tremendously in recent years. One of the most recent methods to be developed is the flux reconstruction approach, which allows various well‐known high‐order schemes to be cast within a single unifying framework. Whilst a connection between flux reconstruction and the more widely adopted discontinuous Galerkin method has been established elsewhere, it still remains to fully investigate the explicit connections between the many popular variants of the discontinuous Galerkin method and the flux reconstruction approach. In this work, we closely examine the connections between three nodal versions of tensor‐product discontinuous Galerkin spectral element approximations and two types of flux reconstruction schemes for solving systems of conservation laws on quadrilateral meshes. The different types of discontinuous Galerkin approximations arise from the choice of the solution nodes of the Lagrange basis representing the solution and from the quadrature approximation used to integrate the mass matrix and the other terms of the discretization. By considering both linear and nonlinear advection equations on a regular grid, we examine the mathematical properties that connect these discretizations. These arguments are further confirmed by the results of an empirical numerical study. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The flux reconstruction (FR) formulation can unify several popular discontinuous basis high-order methods for fluid dynamics, including the discontinuous Galerkin method, in a simple, efficient form. An arbitrary Lagrangian–Eulerian (ALE) extension to the high-order FR scheme is developed here for moving mesh fluid flow problems. The ALE Navier–Stokes equations are derived by introducing a grid velocity. The conservation law are spatially discretised on hybrid unstructured meshes using Huynh’s scheme (Huynh 2007) on anisotropic elements (quadrilaterals) and using Correction Procedure via Reconstruction scheme on isotropic elements (triangles). The temporal discretisation uses both explicit and implicit treatments. The mesh movement is described by node positions given as a time series, instead of an analytical formula. The geometric conservation law is tested using free stream preservation problem. An isentropic vortex propagation test case is performed to show the high-order accuracy of the developed method on both moving and fixed hybrid meshes. Flow around an oscillating cylinder shows the capability of the method to solve moving boundary viscous flow problems, with the numeric method further verified by comparison of the result on a smoothly deforming mesh and a rigid moving mesh.  相似文献   

10.
开发了一种适用于高精度间断Galerkin方法的斜率(多项式系数)限制器。与现有的斜率限制器不同,该限制器实施过程不考虑网格单元类型(三角形或四边形),通过全微分方法构造新的多项式系数,因此,该限制器能够适用于各种类型网格——结构化网格、具有单一单元的非结构化网格和具有混合单元的非结构化网格。由于该限制器能够方便地应用于具有混合单元的非结构化网格,因此,本文使用的程序能够方便地求解具有复杂几何结构的流动问题。本文利用一些典型算例对其性能进行了验证,表明该限制器适用于不同类型的网格单元,能够在光滑解区保证高的精度,并能够在阊断区抑帛3非物理振荡。  相似文献   

11.
In this paper, we describe some existing slope limiters (Cockburn and Shu's slope limiter and Hoteit's slope limiter) for the two‐dimensional Runge–Kutta discontinuous Galerkin (RKDG) method on arbitrary unstructured triangular grids. We describe the strategies for detecting discontinuities and for limiting spurious oscillations near such discontinuities, when solving hyperbolic systems of conservation laws by high‐order discontinuous Galerkin methods. The disadvantage of these slope limiters is that they depend on a positive constant, which is, for specific hydraulic problems, difficult to estimate in order to eliminate oscillations near discontinuities without decreasing the high‐order accuracy of the scheme in the smooth regions. We introduce the idea of a simple modification of Cockburn and Shu's slope limiter to avoid the use of this constant number. This modification consists in: slopes are limited so that the solution at the integration points is in the range spanned by the neighboring solution averages. Numerical results are presented for a nonlinear system: the shallow water equations. Four hydraulic problems of discontinuous solutions of two‐dimensional shallow water are presented. The idealized dam break problem, the oblique hydraulic jump problem, flow in a channel with concave bed and the dam break problem in a converging–diverging channel are solved by using the different slope limiters. Numerical comparisons on unstructured meshes show a superior accuracy with the modified slope limiter. Moreover, it does not require the choice of any constant number for the limiter condition. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
One of the big issues in finite element solutions of wave propagation problems is the presence of spurious high-frequency oscillations that may lead to divergent results at mesh refinement. The paper deals with the extension of the new two-stage time-integration technique developed in our previous papers to the solution of wave propagation problems with explicit time-integration methods.The explicit central difference method is used for accurate time-integration of the semi-discrete system of elastodynamics at the stage of basic computations and allows spurious high-frequency oscillations. To filter these oscillations, pre- or/and post-processing (the filtering stage) is applied using a few time increments of the implicit time-continuous Galerkin method with large numerical dissipation.A special calibration procedure is used for the selection of the minimum necessary amount of numerical dissipation (in terms of a time increment) at the filtering stage. In contrast to existing approaches that use a time-integration method with the same dissipation (or artificial viscosity) for all time increments, the new technique yields accurate and non-oscillatory results for wave propagation problems without interaction between user and computer code. The solutions of 3-D wave propagation and impact problems show the effectiveness of the new approach.  相似文献   

13.
This paper presents the application of a new method for interfacial modeling utilizing a merger of continuous Galerkin and discontinuous Galerkin concepts to simulate the behavior of mechanical joints. The interfacial flux terms arising naturally from the discontinuous Galerkin treatment provide a mechanism to embed friction models in a variationally consistent fashion. Due to the unbiased implementation of the interface, facilitated by avoiding the master–slave concept, the deformation of the two interacting surfaces conforms to the local material and geometric attributes of the surfaces. This results in a better preservation of physics in interface mechanics. Additionally, the method is incorporated into a Variational Multiscale framework that comes equipped with a built-in error estimation module, providing numerical estimation of convergence and distinguishing discretization errors from modeling errors. A series of quasi-static numerical simulations of a lap joint under fretting conditions are conducted to compare the performance of two friction models: (i) classical Coulomb friction model and (ii) physics-based multiscale model. Hysteresis study of a three-dimensional double-bolted lap joint for the two friction models is also presented and the computed results are shown to be consistent between conforming and nonconforming meshes.  相似文献   

14.
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.  相似文献   

15.
对于高频、强脉动荷载作用下的结构动力学波传播分析,对比于传统的时域算法,时域间断Galerkin方法能捕捉到波阵面的间断,有效得避免了由于间断引起的数值振荡。但时域间断方法却带来了波前面的虚假数值振荡。本文针对上述波前数值振荡的现象进行研究,通过引入人工阻尼的方法对时域间断Galerkin有限元方法进行进一步改进。数值结果表明,所发展的方法能够有效的滤掉强动荷载产生的波前数值振荡现象,同时降低了时域间断Galerkin方法的网格依赖性。  相似文献   

16.
针对不连续温度场问题建立了一种间断Galerkin有限元方法,该方法的主要特点是允 许插值函数在单元边界上存在跳变. 在建立有限元方程时,通过在单元边界上引入数值通量 项和稳定性项来处理间断效应,并且数值通量可以直接由接触热阻的定义式导出. 数值算例 表明该方法可以很方便且准确地捕捉到结构内部由于接触热阻而引起的温度跳变,同时在局 部高梯度温度场的模拟方面也比常规连续Galerkin有限元方法效率明显要高. 该方法也为研 究由接触热阻引起的温度场与应力场之间的耦合问题提供了一种新的数值模拟手段.  相似文献   

17.
The frequency or dispersion relation for the discontinuous Galerkin mixed formulation of the 1‐D linearized shallow‐water equations is analysed, using several basic DG mixed schemes. The dispersion properties are compared analytically and graphically with those of the mixed continuous Galerkin formulation for piecewise‐linear bases on co‐located grids. Unlike the Galerkin case, the DG scheme does not exhibit spurious stationary pressure modes. However, spurious propagating modes have been identified in all the present discontinuous Galerkin formulations. Numerical solutions of a test problem to simulate fast gravity modes illustrate the theoretical results and confirm the presence of spurious propagating modes in the DG schemes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Three Galerkin methods—continuous Galerkin, Compact Discontinuous Galerkin, and hybridizable discontinuous Galerkin—are compared in terms of performance and computational efficiency in 2‐D scattering problems for low and high‐order polynomial approximations. The total number of DOFs and the total runtime are used for this correlation as well as the corresponding precision. The comparison is carried out through various numerical examples. The superior performance of high‐order elements is shown. At the same time, similar capabilities are shown for continuous Galerkin and hybridizable discontinuous Galerkin, when high‐order elements are adopted, both of them clearly outperforming compact discontinuous Galerkin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A space–time finite element method for the incompressible Navier–Stokes equations in a bounded domain in ?d (with d=2 or 3) is presented. The method is based on the time‐discontinuous Galerkin method with the use of simplex‐type meshes together with the requirement that the space–time finite element discretization for the velocity and the pressure satisfy the inf–sup stability condition of Brezzi and Babu?ka. The finite element discretization for the pressure consists of piecewise linear functions, while piecewise linear functions enriched with a bubble function are used for the velocity. The stability proof and numerical results for some two‐dimensional problems are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
在急剧温度变化等强间断温度冲击作用下的生物层合组织非傅里叶热传导分析中,经典时域连续有限元方法(如Newmark等方法)会在波阵面以后的和层合组织界面附近的区域表现出强烈的数值振荡。这类数值振荡会影响问题求解精度,并带来较大不确定性。针对这类现象,本文发展了改进时域间断Galerkin有限元方法,进一步开展了相关问题的数值模拟。其控制方程的基本未知数(温度)及其时间导数在指定时间间隔内假设存在间断且独立插值。在有限元离散列式中引入比例刚度阵人工阻尼,以成功消除波前位置的虚假数值振荡行为。通过算例对比分析,相比Newmark方法和传统间断Galerkin方法,所提出的改进时域间断Galerkin有限元方法较好消除了波前、波后以及组织界面处的数值振荡,有效捕捉了波阵面的间断行为,提高了计算的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号