首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 42 毫秒
1.
A new algorithm for phase contrast X-ray tomography under holographic measurement was proposed in this paper. The main idea of the algorithm was to solve the nonlinear phase retrieval problem using the Newton iterative method. The linear equations for the Newton directions were proved to be ill-posed and the regularized solutions were obtained by the conjugate gradient method. Some numerical experiments with computer simulated data were presented. The efficiency, feasibility and the numerical stability of the algorithm were illustrated by the numerical experiments. Compared with the results produced by the linearized phase retrieval algorithm, we can see that the new algorithm is not limited to be only efficient for the data measured in the near-field of the Fresnel region and thus it has a broader validity range.  相似文献   

2.
The paper deals with a mathematical problem describing an exothermic chemical reaction in a diffusing substance possibly undergoing a change of phase. Global well-posedness in the classical sense is proved for the corresponding system of PDEs. Moreover, cases in which the phases are separated by sharp interphases or by transition regions are discussed. The limit case of negligible diffusion is also considered.
Sommario Si studia il problema matematico che descrive una reazione chimica esotermica in una sostanza che diffonde e puo' subire cambiamenti di fase. Si dimostra esistenza globale in senso classico del relativo sistema di equazioni alle derivate parziali e si discute la possibilita' che le fasi siano separate da una regione di transizione e non da una netta superficie di interfase. Il caso limite di assenza di diffusione e' anche brevemente esaminato.
  相似文献   

3.
4.
Summary  Understanding the kinetics of phase boundary movement is of major concern in e.g. martensitic transformation in related engineering applications. The main goal of this paper is to develop such kinetics on the basis of thermodynamic principles at the material microlevel. After a short literature survey in the introduction, the jump condition and thermodynamic force on the interface are discussed based on laws of conservation and thermodynamics. This leads to a relation for the driving force of the transformation front. In particular, the propagating front of a phase-transforming sphere within an elastic-plastic medium is considered. Due to density change, which is implicitly expressed in the transformation volume strain, strains and accompanying stresses are induced which hamper the propagation and influence the transformation kinetics. Together with the latent heat, the heat due to plastic dissipation occurs as a source term in the heat conduction equation. Since kinetics are influenced by temperature, the heat conduction equation and the kinetics equation are coupled. Using Green's function techniques, an integral equation is derived and solved numerically. The results of a parameter study are discussed. Received 10 February 2000; accepted for publication 18 October 2000  相似文献   

5.
Analytical solutions for diffuse interface propagation are found for two recently developed Landau potentials that account for the phenomenology of stress-induced martensitic phase transformations. The solutions include the interface profile and velocity as a function of temperature and stress tensor. An instability in the interface propagation near lattice instability conditions is studied numerically. The effect of material inertia is approximately included. Two methods for introducing an athermal interface friction in phase field models are discussed. In the first method an analytic expression defines the location of the diffuse interface, and the rate of change of the order parameters is required to vanish if the driving force is below a threshold. As an alternative and more physical approach, we demonstrate that the introduction of spatially oscillatory stress fields due to crystal defects and the Peierls barrier, or to a jump in chemical energy, reproduces the effect of an athermal threshold. Finite element simulations of microstructure evolution with and without an athermal threshold are performed. In the presence of spatially oscillatory fields the evolution self-arrests in realistic stationary microstructures, thus the system does not converge to an unphysical single-phase final state, and rate-independent temperature- and stress-induced phase transformation hysteresis are exhibited.  相似文献   

6.
A model of solid–solid phase transition involving dislocations in crystals is proposed within the nonlinear continuum dislocation theory (CDT). The co-existence of phases having piecewise constant plastic slip in laminates is possible for the two-well free energy density. The jumps of the plastic slip across the phase interfaces determine the surface dislocation densities at those incoherent boundaries. The number of phase interfaces should be determined by comparing the energy of dislocation arrays and the relaxed energy minimized among uniform plastic slips.  相似文献   

7.
8.
9.
A wide range of experimental holdup data have been analysed on the basis of the general correlations of Chen & Spedding (1983). For upward inclined flow, holdup data in the range (RG/RL) = 4.0 to 275 were handled using a modification of the Chen & Spedding method, and for the case of (RG/RL) ? 4.0, the modified Armand equation was found to be suitable. Horizontal stratified flow was examined using the Bernoulli equation, and shown to be a limiting case of the free draining of a tube initially filled with liquid. For downward inclined stratified flow, the Manning equation predicted the holdup accurately for low liquid rates and small angles of inclination. In addition, for these two cases of horizontal and downward stratified flow, the holdup also was examined in terms of the critical depth of flow as determined using the total energy relation.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号