首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以某跨声速轴流压气机单转子为研究对象,应用数值模拟技术,采用全通道 计算方案,利用Jameson有限体积中心差分格式并结合Spalart-Allmaras 湍流模型获得进口畸变条件下该轴流压气机转子性能和内部流动细节,详细分析了进气周向 总压畸变对压气机转子内流场流动结构的影响. 并将计算结果与实验结果进行了比较, 结果表明,数值模拟的结果与实验结果符合较好,计算方案切实可行.  相似文献   

2.
离心风机蜗壳在内部流场脉动压力激励下的动力响应研究   总被引:2,自引:0,他引:2  
数值模拟了离心风机蜗壳在非定常气动载荷下的动力响应.首先考虑蜗壳与轮盘轮盖之间的间隙及轮盖处的内泄露,模拟了T9-19No.4A离心通风机内部三维非定常流场.然后将作用在蜗壳表面的非定常气动力加载给蜗壳模型,并采用有限元方法对蜗壳进行动力响应计算,实现了从流体到结构的单向耦合.最后将实验测量和数值计算蜗壳的振幅进行对比,结果吻合良好,表明本文的方法能够较为准确地模拟蜗壳在内部流场脉动压力激励下的动力响应.  相似文献   

3.
结合实验和数值模拟,研究了散心冲击波在金属柱壳约束下沿有机玻璃内部的空间分布。进行了点起爆柱状炸药驱动飞片加载实验,采用Polyvinylidence Fluoride (PVDF)测试方法对有机玻璃内部的压力进行测试。实验结果显示:在冲击波传播过程中,在特定传播距离处,离中心轴越近,冲击波第一幅值压力越小,这是因为散心冲击驱动飞片成前凸形状,在飞片飞行过程中与有机玻璃碰撞面积越来越大,在远离对称轴部位冲击压力叠加累积效应更强引起的;但在随后的冲击波传播过程中,由于受到柱壳约束影响,离对称轴越近,冲击波幅值越小,这是由散心冲击波在约束柱壳边界反射与冲击波波阵面叠加的结果。通过对炸药网格大变形溢出柱壳翻转进行合理处理,对实验进行了数值模拟。数值模拟结果所得的冲击压力沿径向分布规律计算结果与实验结果定性相符。最后探讨了不同约束程度对这一规律的影响程度,结果表明,后续的冲击波幅值随着约束的增加而急剧增加。  相似文献   

4.
激波绕过半菱形柱体流场是十分复杂的,本文用实验方法和数值模拟对该问题作了系统研究。实验是在UTIAS激波管上进行的,数值模拟采用2阶精度Godunow格式,最后实验结果和数值模拟作了比较。  相似文献   

5.
防护屏穿孔直径在Whipple防护结构的超高速撞击实验中易于测量,是检验超高速撞击实验及数值模拟有效性的重要参数.本文分别采用超高速撞击实验、数值模拟及经验公式对铝合金Whipple防护结构的防护屏穿孔进行了研究.数值模拟结果与实验结果吻合很好,说明本文物理建模及参数的选取是合理的,同时也验证了数值模拟方法的正确性及有效性;使用经验公式进行了对比计算,结果表明Maiden C J给出的公式具有很好的普适性.最后利用数值模拟研究不同材料对超高速撞击防护屏穿孔的影响.合理的应用经验公式及数值模拟可以更加快捷、有效地开展超高速撞击实验研究.  相似文献   

6.
建立粒子场同轴全息非线性记录对再现像影响的数值模拟模型,模拟了不同形状粒子在非线性段记录时再现像。并通过实验验证了数值模拟模型,实验上得到非线性记录下不同形状粒子的再现像。  相似文献   

7.
针对泡沫铝及其填充圆柱壳的变形模式复杂、理论分析困难的问题,在分析泡沫金属唯象本构模型的基础上,用Bilkhu/Dubois可压缩泡沫模型描述泡沫铝的力学行为,用随机几何缺陷描述结构的可能缺陷形式,采用有限元法对内部填充泡沫铝的圆柱壳结构在轴向载荷作用下的静、动态力学响应进行了数值模拟.数值模拟结果与实验结果较一致,表...  相似文献   

8.
激波风洞内超燃冲压发动机三面压缩进气道流场实验观测   总被引:2,自引:0,他引:2  
主要进行了超燃冲压发动机三面压缩进气道的实验观测。利用来流马赫数4.5的直通式激波风洞,考察了三组具有不同压缩角度的进气道模型内部的流场情况。实验观测手段为油流法、丝线法和高速纹影,同时,辅以数值模拟以有助于流场细节分析。纹影照片展示了进气道内部以激波边界层相互作用为主要影响因素的流场复杂结构,数值模拟也显示了相近的结果。油流技术与丝线法显示了近壁面处的流动图像,照片中可见激波、分离线、再附线等分界线位置。根据实验结果,可以推测唇口激波与进气道内边界层的相互作用及其引起的壁面分离是影响进气道内流动的主要因素。同时,尝试了利用抽吸方法减弱激波与边界层相互作用诱发的壁面流动分离,并取得一定结果。  相似文献   

9.
脆性材料内部含有大量裂纹,当某一裂纹扩展时,其他裂纹会对扩展裂纹产生影响。为了研究冲击载荷下,脆性材料内两裂纹的相互影响、连通规律及裂纹尖端应力强度因子的变化规律,利用有机玻璃板制作了含非平行双裂纹的实验试件,利用落板冲击设备进行了中低速冲击实验,结合有限元分析软件ABAQUS计算出裂纹尖端应力强度因子,利用有限差分软件AUTODYN进行了动态数值模拟研究,并将其模拟结果与实验结果进行对比分析。实验及模拟结果表明:裂纹破坏形态与AUTODYN数值模拟破坏形态基本一致;试件的断裂形态随着两裂纹间距不同而不同;裂纹间的相互影响程度随着裂纹间间距增大而减小;裂纹尖端应力强度因子KI随着裂纹间距的增大而减小,而KII随着裂纹间距增大而增大。  相似文献   

10.
燃料爆炸抛撒成雾的实验与数值研究   总被引:16,自引:2,他引:14  
为了合理设计云雾爆轰装置 ,对液体燃料爆炸抛撒规律作了实验与数值模拟研究。获得 6~ 2 5 0kgFAE装置云雾形成的若干重要实验数据。通过实验数据分析给出了云雾膨胀的相似律 ,并研究了爆炸抛撒过程中近场与远场阶段特性 :用一个简化的解析模型描述了液体燃料的近场膨胀 ,给出了液体燃料在加速阶段的极限速度 ;用数值方法研究了远场云雾的物理特性 ,给出了云雾速度场及云雾内部燃料浓度与燃料蒸汽浓度的分布。  相似文献   

11.
The experiments were conducted with triangular and pin fin array at constant heat flux. Nu is determined as a function of Remax at Pr=0.7 for both sets of experiments. For each fin array, an equation is obtained to determine Nu as a function of Remax using experimental results. These regressions are accurate within the accuracy of the measurements (±15) at Remax ranging between 100 and 700. Received on 22 December 1997  相似文献   

12.
Three-dimensional mean velocity and concentration fields have been measured for a water flow in a pressure side cutback trailing edge film cooling geometry consisting of rectangular film cooling slots separated by tapered lands. Three-component mean velocities were measured with conventional magnetic resonance velocimetry, while time-averaged concentration distributions were measured with a magnetic resonance concentration technique for flow at two Reynolds numbers (Re) differing by a factor of 2, three blowing ratios, and with and without an internal pin fin array in the coolant feed channel. The results show that the flows are essentially independent of Re for the regime tested in terms of the film cooling surface effectiveness, normalized velocity profiles, and normalized mean streamwise vorticity. Blowing ratio changes had a larger effect, with higher blowing ratios resulting in surface effectiveness improvements at downstream locations. The addition of a pin fin array within the slot feed channel made the spanwise distribution of coolant at the surface more uniform. Results are compared with transonic experiments in air at realistic density ratios described by Holloway et al. (2002a).  相似文献   

13.
A micro heat exchanger (MHE) can effectively control the temperature of surfaces in high heat flux applications. In this study, several turbulence models are analyzed using a 3D finite element model of a MHE. The MHE consists of a narrow planar flow passage between flat parallel plates with small cylindrical pin fins spanning these walls. The pin fin array geometry investigated is staggered, with pin diameters of 0.5, 5.1 and 8.5 mm, height to diameter ratio of 1.0 and streamwise (longitudinal) and spanwise (transverse) to diameter ratios of 1.5 and 2.5, respectively. Pressure loss and heat transfer simulated results for 4,000 ≤ Re ≤ 50,000 are reported and compared with previously published numerical and experimental results. It was found that the flat micro pin fin overall thermal performance always exceeds that of the parallel plate counterpart (smooth channel) by a factor of as much as 2.2 for the 8.5 mm diameter pins, and by 4 for the 0.5 mm diameter pins in the investigated Reynolds number range. Further, among the six turbulence models investigated, the RNG model tends to be the best model to predict both the Nusselt number and the friction factor and capture the main feature of the flow field in MHE.  相似文献   

14.
Natural convection heat transfer from a vertical isothermal plate with pin fins is numerically studied by solving the Navier–Stokes equations along with the energy equation. The average Nusselt number for the plate with different configurations of pin fins is obtained. The average Nusselt number is found to increase with increasing aspect ratio of the fin and to decrease with increasing angle of fin inclination with respect to the plate. There is only a minor difference between the average Nusselt numbers for in-line and staggered arrangement of fins for the range of parameters studied in the present work. A correlation is developed to predict the average Nusselt number of the plate as a function of fin spacing in the streamwise and spanwise directions, aspect ratio of the fin, and its angle of inclination.  相似文献   

15.
A new absorber configuration has been proposed for parabolic trough solar collector. It consists of a tube through which the working fluid flows. The tube is attached externally to two longitudinal fins which are directed normally to the collector aperture. The absorber aggregate, tube and fins, is encased by a transparent envelope. The heat balance equations for such absorber have been derived and solved. Based on these analyses a study has been carried out on an absorber located in Alexandria (31o N latitude) in Egypt to show the effect of its geometrical parameters on the thermal performance. The results of the study show that a wide range of concentration ratios, higher than the smallest ideal ones, can be chosen. For each concentration ratio, there is a corresponding fin height to absorber tube diameter ratio which maximizes the collector efficiency. The greatest collector efficiency is achieved when the concentration ratio is 1.7 of the smallest ideal one and the ratio of fin height to tube diameter in 0.7. In this case the collector efficiency increases in average ca. 3% over that when using a conventional absorber.  相似文献   

16.
It has been experimentally researched that convective heat transfer and pressure loss characteristics in rectangular channels with staggered arrays of drop-shaped pin fins in crossflow of air. The effects of arrangements of pin fins on heat transfer and resistance are discussed and the row-by-row variations of the mean Nusselt numbers are presented. By means of the heat/mass transfer analogy and the naphthalene sublimation technique, the heat transfer coefficients on pin fins and on endwall (base plate) of the channel have been achieved respectively. The total mean heat transfer coefficients of pin fin channels are calculated and the resistance coefficients are also investigated. The experimental results show that heat transfer of a channel with drop-shaped pin fins is higher than that with circular pin fins while the resistance of the former is much lower than that of the latter in the Reynolds number range from 900 to 9000. Received on 20 January 1997  相似文献   

17.
This paper presents results of the experimental study conducted on heated horizontal rectangular fin array under natural convection. The temperature mapping and the prediction of the flow patterns over the fin array with variable fin spacing is carried out. Dimensionless fin spacing to height (S/H) ratio is varied from 0.05 to 0.3 and length to height ratio (L/H) = 5 is kept constant. The heater input to the fin array assembly is varied from 25 to 100 W. The single chimney flow pattern is observed from 8 to 12 mm fin spacing. The end flow is choked below 6 mm fin spacing. The single chimney flow pattern changes to sliding or end flow choking at 6 mm fin spacing. The average heat transfer coefficient (ha) is very small (2.52–5.78 W/m2 K) at 100 W for S = 5–12 mm. The ha is very small (1.12–1.8 W/m2 K) at 100 W for 2–4 mm fin spacing due to choked fin array end condition. The end flow is not sufficient to reach up to central portion of fin array and in the middle portion there is an unsteady down and up flow pattern resulting in sliding chimney. The central bottom portion of fin array channel does not contribute much in heat dissipation for S = 2–4 mm. The ha has significantly improved at higher spacing as compared to lower spacing region. The single chimney flow pattern is preferred from heat transfer point of view. The optimum spacing is confirmed in the range of 8–10 mm. The average heat transfer results are compared with previous literature and showed similar trend and satisfactory agreement. An empirical equation has been proposed to correlate the average Nusselt number as a function of Grashof number and fin spacing to height ratio. The average error for this equation is ?0.32 %.  相似文献   

18.
A methodology for determining the optimum pin fin profile is introduced to minimize the fin volume for a constrained heat transfer rate under dehumidifying surface conditions. In this methodology, the mass transfer is evaluated using the polynomial variation of humidity ratio with temperature. A scheme is developed for solving the optimum conditions derived as a function of unknown temperature-dependent parameter and tip temperature under both the fully and partially wet surface conditions. The effect of psychrometric properties of the surrounding air on the optimum wet fin profile has been examined. The analysis presented in this study is pertinent to the dry, fully wet, and partially wet surface conditions. In every case study of optimum wet fins, the excess temperature at the tip vanishes with respect to the surrounding temperature. A non-linear temperature distribution in the optimum wet fin has been identified.  相似文献   

19.
This paper, for the first time, experimentally elucidated pin fin boiling characteristics of saturated and subcooled HFE-7100, a CFC-substitute, under atmospheric pressure. Fin base temperature and heat flux data are, for the first time, measured along with the fin tip temperature. For a given liquid/fin combination there exist upper steady-state (USS) branch, lower steady-state (LSS) branch, and a large, unstable regime located in between the two branches. Zones with different stability characteristics are mapped according to boiling on fins with different aspect ratios. Liquid subcooling enhances heat transfer performance and boiling stability. Calculation of boiling curve qualitatively describes the experimental results.  相似文献   

20.
This work theoretically investigated the thermal performance and stability characteristics of a straight pin fin subject to boiling considering a temperature-dependent thermal conductivity of fin, k=k sat(1+b(TT sat)). Steady-state temperature distribution and the associated fin base heat flow were for the first time analytically found, whose stability characteristics were evaluated by linear stability analysis. A positive temperature coefficient b will raise both the fin's temperature and base heat flow. The corresponding stability for stable fin boiling was enhanced. A negative b results in an opposite trend. The use of a mean thermal conductivity in fin boiling calculations is discussed. Received on 3 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号