首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
J. C. Ji 《Nonlinear dynamics》2014,78(3):2161-2184
Stable bifurcating solutions may appear in an autonomous time-delayed nonlinear oscillator having quadratic nonlinearity after the trivial equilibrium loses its stability via two-to-one resonant Hopf bifurcations. For the corresponding non-autonomous time-delayed nonlinear oscillator, the dynamic interactions between the periodic excitation and the stable bifurcating solutions can induce resonant behaviour in the forced response when the forcing frequency and the frequencies of Hopf bifurcations satisfy certain relationships. Under hard excitations, the forced response of the time-delayed nonlinear oscillator can exhibit three types of secondary resonances, which are super-harmonic resonance at half the lower Hopf bifurcation frequency, sub-harmonic resonance at two times the higher Hopf bifurcation frequency and additive resonance at the sum of two Hopf bifurcation frequencies. With the help of centre manifold theorem and the method of multiple scales, the secondary resonance response of the time-delayed nonlinear oscillator following two-to-one resonant Hopf bifurcations is studied based on a set of four averaged equations for the amplitudes and phases of the free-oscillation terms, which are obtained from the reduced four-dimensional ordinary differential equations for the flow on the centre manifold. The first-order approximate solutions and the nonlinear algebraic equations for the amplitudes and phases of the free-oscillation terms in the steady state solutions are derived for three secondary resonances. Frequency-response curves, time trajectories, phase portraits and Poincare sections are numerically obtained to show the secondary resonance response. Analytical results are found to be in good agreement with those of direct numerical integrations.  相似文献   

2.
The trivial equilibrium of a two-degree-of-freedom autonomous system may become unstable via a Hopf bifurcation of multiplicity two and give rise to oscillatory bifurcating solutions, due to presence of a time delay in the linear and nonlinear terms. The effect of external excitations on the dynamic behaviour of the corresponding non-autonomous system, after the Hopf bifurcation, is investigated based on the behaviour of solutions to the four-dimensional system of ordinary differential equations. The interaction between the Hopf bifurcating solutions and the high level excitations may induce a non-resonant or secondary resonance response, depending on the ratio of the frequency of bifurcating periodic motion to the frequency of external excitation. The first-order approximate periodic solutions for the non-resonant and super-harmonic resonance response are found to be in good agreement with those obtained by direct numerical integration of the delay differential equation. It is found that the non-resonant response may be either periodic or quasi-periodic. It is shown that the super-harmonic resonance response may exhibit periodic and quasi-periodic motions as well as a co-existence of two or three stable motions.  相似文献   

3.
This paper investigates the Hopf bifurcation of a four-dimensional hyperchaotic system with only one equilibrium. A detailed set of conditions is derived which guarantees the existence of the Hopf bifurcation. Furthermore, the standard normal form theory is applied to determine the direction and type of the Hopf bifurcation, and the approximate expressions of bifurcating periodic solutions and their periods. In addition, numerical simulations are used to justify theoretical results.  相似文献   

4.
The weakly nonlinear resonant response of an orthogonal double pendulum to planar harmonic motions of the point of suspension is investigated. The two pendulums in the double pendulum are confined to two orthogonal planes. For nearly equal length of the two pendulums, the system exhibits 1:1 internal resonance. The method of averaging is used to derive a set of four first order autonomous differential equations in the amplitude and phase variables. Constant solutions of the amplitude and phase equations are studied as a function of physical parameters of interest using the local bifurcation theory. It is shown that, for excitation restricted in either plane, there may be as many as six pitchfork bifurcation points at which the nonplanar solutions bifurcate from the planar solutions. These nonplanar motions can become unstable by a saddle-node or a Hopf bifurcation, giving rise to a new branch of constant solutions or limit cycle solutions, respectively. The dynamics of the amplitude equations in parameter regions of the Hopf bifurcations is then explored using direct numerical integration. The results indicate a complicated amplitude dynamics including multiple limit cycle solutions, period-doubling route to chaos, and sudden disappearance of chaotic attractors.  相似文献   

5.
Hongwei Li 《Nonlinear dynamics》2012,70(2):1327-1334
Inspirited by Li and Jin (Nonlinear Dyn. 67:2857?C2864 2012), this paper investigates the Hopf bifurcation of a four-dimensional hyperchaotic system with only one equilibrium. A detailed set of conditions are derived, which guarantee the existence of the Hopf bifurcation. Furthermore, the standard normal form theory is applied to determine the direction and type of the Hopf bifurcation, and the approximate expressions of bifurcating periodic solutions and their periods. In addition, numerical simulations are used to justify theoretical results.  相似文献   

6.
Forced, weakly nonlinear oscillations of a two degree-of-freedom autoparametric vibration absorber system are studied for resonant excitations. The method of averaging is used to obtain first-order approximations to the response of the system. A complete bifurcation analysis of the averaged equations is undertaken in the subharmonic case of internal and external resonance. The locked pendulum mode of response is found to bifurcate to coupled-mode motion for some excitation frequencies and forcing amplitudes. The coupled-mode response can undergo Hopf bifurcation to limit cycle motions, when the two linear modes are mistuned away from the exact internal resonance condition. The software packages AUTO and KAOS are used and a numerically assisted study of the Hopf bifurcation sets, and dynamic steady solutions of the amplitude or averaged equations is presented. It is shown that both super-and sub-critical Hopf bifurcations arise and the limit cycles quickly undergo period-doubling bifurcations to chaos. These imply chaotic amplitude modulated motions for the system.  相似文献   

7.
Yan  Xiang-Ping  Liu  Fang-Bin  Zhang  Cun-Hua 《Nonlinear dynamics》2020,99(3):2011-2030

This paper takes into consideration a damped harmonic oscillator model with delayed feedback. After transforming the model into a system of first-order delayed differential equations with a single discrete delay, the single stability switch and multiple stability switches phenomena as well as the existence of Hopf bifurcation of the zero equilibrium of the system are explored by taking the delay as the bifurcation parameter and analyzing in detail the associated characteristic equation. Particularly, in view of the normal form method and the center manifold reduction for retarded functional differential equations, the explicit formula determining the properties of Hopf bifurcation including the direction of the bifurcation and the stability of the bifurcating periodic solutions are given. In order to check the rationality of our theoretical results, numerical simulations for some specific examples are also carried out by means of the MATLAB software package.

  相似文献   

8.
We investigate Hopf bifurcations in a delayed Nicholson’s blowflies equation of neutral type, derived from the Gurtin–MacCamy model. A key parameter that determines the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived. Global extension of local Hopf branches is established by combining a global Hopf bifurcation theorem with a Bendixson criterion for higher dimensional ordinary differential equations. We show that a branch of slowly varying periodic solutions and a branch of fast oscillating periodic solutions coexist for all large delays.  相似文献   

9.
Flow-induced oscillations of rigid cylinders exposed to fully developed flow can be described by a fourth order autonomous system of ordinary differential equations. Its rest solution is the only equilibrium point which is unstable in the entire regime of parameters. It turns out that Hopf bifurcations from the trivial solution occur in regions of comparatively low damping. We found that a wind speed parameter, Ω, controls the bifurcations while the other parameters have been arranged into discrete sets. In the case of two bifurcating solutions with branches of amplitudes tending towards each other, hysteresis occurred. The bifurcating solutions are unstable close to their respective bifurcation points. The branch tending to the left-hand side changes its stability and exhibits high-level amplitudes of synchronized oscillations. This type of solution can also be analysed by means of asymptotic methods. Near the location of the bifurcation, the predictions of bifurcation theory, the multiple scales approach, and numerics are in quite good agreement. As opposed to this, the branch tending to the right-hand side represents synchronized oscillations of somewhat smaller period but much smaller cylinder amplitudes, and these vibrations remain unstable in the entire regime of parameters. This means that keeping the cylinder fixed, starting the wind tunnel, and releasing the cylinder at low wind speeds would lead to a jump of its displacement amplitude from the low, unstable to the comparatively high-stable values. It is shown that the theoretical predictions are in fairly good agreement with the experimental trends of flow-induced synchronized cylinder oscillations.  相似文献   

10.
A genetic regulatory network mediated by small RNA with two time delays is investigated. We show by mathematical analysis and simulation that time delays can provide a mechanism for the intracellular oscillator. By linearizing the system at the positive equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the positive equilibrium is investigated and Hopf bifurcations are demonstrated. Furthermore, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations. Finally, some numerical simulations are carried out for illustrating the theoretical results.  相似文献   

11.
In this paper, a finance system with time delay is considered. By linearizing the system at the unique equilibrium and analyzing the associated characteristic equation, the asymptotic stability of the unique equilibrium is investigated and Hopf bifurcations are demonstrated. Furthermore, the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations. Finally, some numerical simulations are carried out for illustrating the theoretical results.  相似文献   

12.
The postcritical behavior of a generaln-dimensional system around a resonant double Hopf bifurcation isanalyzed. Both cases in which the critical eigenvalues are in ratios of1:2 and 1:3 are investigated. The Multiple Scale Method is employedto derive the bifurcation equations systematically in terms of thederivatives of the original vector field evaluated at the criticalstate. Expansions of the n-dimensional vector of state variables andof a three-dimensional vector of control parameters are performed interms of a unique perturbation parameter ε, of the order ofthe amplitude of motion. However, while resonant terms only appear atthe ε3-order in the 1:3 case, they already arise at theε2-order in the 1:2 case. Thus, by truncating theanalysis at the ε3-order in both cases, first orsecond-order bifurcation equations are respectively drawn, the latterrequiring resort to the reconstitution principle. A two-degrees-of-freedom system undergoing resonant double Hopf bifurcations isstudied. The complete postcritical scenario is analyzed in terms of thethree control parameters and the asymptotic results are compared withexact numerical integrations for both resonances. Branches of periodicas well as periodically modulated solutions are found and theirstability analyzed.  相似文献   

13.
In this paper, we consider the effect of distributed delays in a three-neuron unidirectional ring. Sufficient conditions for existence of unique equilibrium, multiple equilibria and their local stability are derived. Taking the average delay as a bifurcation parameter, we find two critical values at which the system undergoes Hopf bifurcations. The orbital asymptotic stability of the Hopf bifurcating periodic solutions is investigated by using the method of multiple scales. The global Hopf bifurcation is also studied. Finally, the theoretical results are illustrated by some numerical simulations.  相似文献   

14.
A new perturbation method for a weakly nonlinear two-dimensional discrete-time dynamical system is presented. The proposed technique generalizes the asymptotic perturbation method that is valid for continuous-time systems and detects periodic or almost-periodic orbits and their stability. Two equations for the amplitude and the phase of solutions are derived and their fixed points correspond to limit cycles for the starting nonlinear map. The method is applied to various nonlinear (autonomous or not) two-dimensional maps. For the autonomous maps we derive the conditions for the appearance of a supercritical Hopf bifurcation and predict the characteristics of the corresponding limit cycle. For the nonautonomous maps we show amplitude-response and frequency-response curves. Under appropriate conditions, we demonstrate the occurrence of saddle-node bifurcations of cycles and of jumps and hysteresis effects in the system response (cusp catastrophe). Modulated motion can be observed for very low values of the external excitation and an infinite-period bifurcation occurs if the external excitation increases. Analytic approximate solutions are in good agreement with numerically obtained solutions.  相似文献   

15.
In this paper, we consider a delayed food-limited model with feedback control. By regarding the delay as the bifurcation parameter and analyzing the corresponding characteristic equations, the linear stability of the system is discussed, and Hopf bifurcations are demonstrated. By the normal form and the center manifold theory, the explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. Finally, some examples are presented to verify our main results.  相似文献   

16.
This paper presents a new four-dimensional smooth quadratic autonomous hyper-chaotic system which can generate novel two double-wing periodic, quasi-periodic and hyper-chaotic attractors. The Lyapunov exponent spectrum, bifurcation diagram and phase portrait are provided. It is shown that this system has a wide hyper-chaotic parameter. The pitchfork bifurcation and Hopf bifurcation are discussed using the center manifold theory. The ellipsoidal ultimate bound of the typical hyper-chaotic attractor is observed. Numerical simulations are given to demonstrate the evolution of the two bifurcations and show the ultimate boundary region.  相似文献   

17.
This paper studies the dynamics of a maglev system around 1:3 resonant Hopf–Hopf bifurcations. When two pairs of purely imaginary roots exist for the corresponding characteristic equation, the maglev system has an interaction of Hopf–Hopf bifurcations at the intersection of two bifurcation curves in the feedback control parameter and time delay space. The method of multiple time scales is employed to drive the bifurcation equations for the maglev system by expressing complex amplitudes in a combined polar-Cartesian representation. The dynamics behavior in the vicinity of 1:3 resonant Hopf–Hopf bifurcations is studied in terms of the controller’s parameters (time delay and two feedback control gains). Finally, numerical simulations are presented to support the analytical results and demonstrate some interesting phenomena for the maglev system.  相似文献   

18.
The dynamical behavior of a general n-dimensional delay differential equation (DDE) around a 1:3 resonant double Hopf bifurcation point is analyzed. The method of multiple scales is used to obtain complex bifurcation equations. By expressing complex amplitudes in a mixed polar-Cartesian representation, the complex bifurcation equations are again obtained in real form. As an illustration, a system of two coupled van der Pol oscillators is considered and a set of parameter values for which a 1:3 resonant double Hopf bifurcation occurs is established. The dynamical behavior around the resonant double Hopf bifurcation point is analyzed in terms of three control parameters. The validity of analytical results is shown by their consistency with numerical simulations.  相似文献   

19.
The bifurcations and chaotic dynamics of parametrically and externally excited suspended cables are investigated in this paper. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The Galerkin procedure is introduced to simplify the governing equations of motion to ordinary differential equations with two-degree-of-freedom. The case of one-to-one internal resonance between the modes of suspended cables, primary resonant excitation, and principal parametric excitation of suspended cables is considered. Using the method of multiple scales, a parametrically and externally excited system is transformed to the averaged equations. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, and Hopf bifurcations. A detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Five branches of dynamic solutions are found. Three of these branches that emerge from two Hopf bifurcations and the other two are isolated. The two Hopf bifurcation points, one is supercritical Hopf bifurcation point and another is primary Hopf bifurcation point. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging, boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, homoclinic explosions and hyperchaos are also observed.  相似文献   

20.
We consider solutions bifurcating from a spatially homogeneous equilibrium under the assumption that the associated linearization possesses a continuous spectrum up to the imaginary axis, for all values of the bifurcation parameter, and that a pair of imaginary eigenvalues crosses the imaginary axis. For a reaction-diffusion-convection system we investigate the nonlinear stability of the trivial solution with respect to spatially localized perturbations, prove the occurrence of a Hopf bifurcation and the nonlinear stability of the bifurcating time-periodic solutions, again with respect to spatially localized perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号