首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
讨论横观各向同性体中含一半平面裂纹,在裂纹面上作用有运动点荷载的三维复合型应力强度因子历史,通过积分变换技术,最终将问题归结为求解Wiener-Hopf型积分方程组,该文给出了求解这一类积分方程组的一般性方法,在此基础上,基于Abel定理和Cagniard-deHoop方法,求得Ⅱ、Ⅲ型复合应力强度因子的解析解,最后通过数值结果揭示了横观各向同性材料三维方尖端场的动态特性。  相似文献   

2.
An oblique edge crack in an anisotropic material under antiplane shear loadings is investigated. The antiplane problems are formulated based on a linear transformation method. An anisotropic solid containing an edge crack subjected to concentrated forces is first considered. The stress intensity factor for the edge crack with concentrated forces is obtained from the solution of the transformed edge crack in an isotropic material which is solved by using conformal mapping technique and complex function theory. The solution of the edge crack under concentrated loads is used to construct the stress intensity factor for the oblique edge crack in the anisotropic material subjected to antiplane distributed loads. Some numerical computations are carried out to calculate the stress intensity factors for the edge crack in inclined orthotropic materials subjected to point forces as well as distributed tractions.  相似文献   

3.
The mode III crack problem in a medium possessing coupled electro-magneto-elastic is considered. Two asymmetrical edge cracks emanate from an elliptical hole. Combined stress, electric and magnetic loads are considered. The elliptical hole and cracks are assumed to be either magneto-electrically impermeable or permeable. The closed-form solution for stress, electric and magnetic intensity factors are derived explicitly. Also the solution for energy release rate is given in closed form. The solution is based on the complex variable method combined with the method of conformal mapping. Numerical computations are given to illustrate the effect of variable geometrical and material parameters on stress, electric and magnetic intensity factors and energy release rate.  相似文献   

4.
The mode I extension of a half plane crack in a transversely isotropic solid under 3-D loading is analyzed. Firstly, the fundamental problem that the crack is subjected to a pair of unit point loads on its faces is considered. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener–Hopf technique. The Cagniard–de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Based on the fundamental solution, the stress intensity factor history due to general loading is then obtained. Some features of the solutions are discussed through numerical results.  相似文献   

5.
Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Some features of the solution are discussed through numerical results. The project supported by the Guangdong Provincial Natural Science Foundation and the Science Foundation of Shantou University  相似文献   

6.
赵晓华 《力学季刊》2000,21(4):462-469
讨论一对集中力作用下横观各向同性体三维裂纹的瞬态扩展问题,其解答构成三维裂纹瞬态扩展问题的基本解。求解方法是基于积分变换技术,将混合边值问题化为Wiener-Hopf型积分方程,求得了裂纹所在平面应力和位移的封闭形式解。进一步利用Abel定理和Cagniard-de Hoop方法,求得了动态应力强度因子的精确解。最后通过数值结果揭示了横观各向同性材料三维扩展裂纹尖端场的动态特性。  相似文献   

7.
A solution method is derived to determine the stress intensity factors for both an internal crack and an edge crack in an orthotropic substrate that is reinforced on its boundary by a finite-length orthotropic plate. The method utilizes the Green’s functions for a pair of dislocations and a concentrated force on the boundary while invoking the concept of superposition. Enforcing the traction-free boundary condition along the crack surfaces and the continuity of displacement gradients along the plate/substrate interface results in a coupled system of singular integral equations. An asymptotic analysis of the kernels in these equations for the region of the junction point between the plate corner and the substrate boundary reveals the strength of the singularity in the case of an edge crack. The numerical solution of the integral equations provides results for the stress intensity factors for both an internal crack and an edge crack perpendicular to the substrate boundary and aligned with one of the corners of the plate. The present results have been validated against previously published stress intensity factors for an internal crack and an edge crack in an isotropic substrate.  相似文献   

8.
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier-Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0.  相似文献   

9.
This paper investigates the edge crack problem for a coating/substrate system with a functionally graded interfacial zone under the condition of antiplane deformation. With the interfacial zone being modeled by a nonhomogeneous interlayer having the continuously varying shear modulus between the dissimilar, homogeneous phases of the coated medium, the coating is assumed to contain an edge crack at an arbitrary angle to the interfacial zone. The Fourier integral transform method is used in conjunction with the coordinate transformations of basic field variables. Formulation of the proposed crack problem is then reduced to solving a singular integral equation with a generalized Cauchy kernel. The mode III stress intensity factors are defined and evaluated in terms of the solution to the integral equation. In the numerical results, the values of the stress intensity factors are plotted, illustrating the effects of the crack orientation angle for various material and geometric combinations of the coating/substrate system with the graded interfacial zone.  相似文献   

10.
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method.  相似文献   

11.
Owing to the advantages of noncontact and fullfield measurement, an optical system called the amplitude fluctuation electronic speckle pattern interferometry (AFESPI) method with an out-of-plane setup is employed to investigate the vibration of a cantilever square plate with a crack emanating from one edge. Based on the fact that clear fringe patterns will be shown by the AFESPI method only at resonant frequencies, both the resonant frequencies and the vibration mode shapes can be obtained experimentally at the same time. Three different crack locations will be discussed in detail in this study. One is parallel to the clamped edge, and the other two are perpendicular to the clamped edge. The numerical finite element calculations are compared with the experimental results, and good agreement is obtained for resonant frequencies and mode shapes. The influences of crack locations and lengths on the vibration behavior of the clamped cantilever plate are studied in terms of the dimensionless frequency parameter (λ 2) versus crack length ratio (a/L). The authors find that if the crack face displacements are out of phase, a large value of stress intensity factor may be induced, and the cracked plate will be dangerous from the fracture mechanics point of view. However, there are some resonant frequencies for which the crack face displacements are completely in phase, causing a zero stress intensity factor, and the cracked plate will be safe.  相似文献   

12.
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is considered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented. The project supported by the National Natural Science Foundation of China  相似文献   

13.
孔边裂纹对SH波的散射及其动应力强度因子   总被引:15,自引:1,他引:14  
刘殿魁  刘宏伟 《力学学报》1999,31(3):292-299
采用Green函数法研究任意有限长度的孔边裂纹对SH波的散射和裂纹尖端场动应力强度因子的求解.取含有半圆形缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时位移函数的基本解作为Green函数,采用裂纹“切割”方法并根据连接条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.最后给出了孔边裂纹动应力强度因子的算例和结果,并讨论了圆孔的存在对动应力强度因子的影响  相似文献   

14.
张端重  柳春图 《力学学报》1989,21(3):359-363
  相似文献   

15.
与两相材料界面接触的裂纹对SH波的散射   总被引:1,自引:0,他引:1  
陆建飞  汪越胜  蔡兰 《力学学报》2003,35(4):432-436
利用积分变换方法得出了两相材料中作用简谐集中力时的格林函数.根据所得的格林函数并利用Betti-Rayleigh互易定理得出了与界面接触裂纹的散射波场.裂纹的散射波场可分解为两部分,一部分为奇异的散射场,另一部分为有界的散射场.利用分解后的散射场,可得裂纹在SH波作用下的超奇异积分方程.根据裂纹散射场的奇异部分和Cauchy型奇异积分的性质得出了裂纹和界面接触点处的奇性应力指数和接触点角形域内的奇性应力.利用所得的奇性应力定义了裂纹和界面接触点处的动应力强度因子.对所得超奇异积分方程的数值求解可得裂纹端点和接解点处的应力强度因子。  相似文献   

16.
含偏置裂纹三点弯曲梁的动态断裂行为研究   总被引:15,自引:0,他引:15  
姚学锋  熊春阳  方竞 《力学学报》1996,28(6):661-669
采用动态焦散线方法,对含偏置裂纹三点弯曲梁承受横向冲击的弯曲断裂行为进行了一系列动态断裂力学实验研究,分析了无量纲量a/l的改变(a——初始裂纹偏离梁中心线的距离;l——梁长度的一半)对于裂纹动态扩展行为(裂纹起始状态、裂纹尖端的复合应力强度因子、裂纹扩展速度、裂纹扩展轨迹)的影响,并借助动态光弹性应力分析,对应力波与扩展裂纹的相互作用以及应力波传播规律进行探讨.给出了裂纹尖端复合应力强度因子、裂纹扩展速度的变化、裂纹曲裂轨迹以及方向与梁中应力波传播的相互关系  相似文献   

17.
A mode III fracture problem of edge cracks originating from a circular hole in an infinite piezoelectric solid is studied based on complex variable method combined with the method of conformal mapping. Explicit and exact expressions for the complex potentials, field intensity factors and energy release rates are presented under the assumption that the surface of the cracks and hole is electrically impermeable. Numerical analysis is then conducted to discuss the influences of crack length and applied mechanical/electric loads on the field intensity factors and energy release rate for one and two edge cracks, respectively. It is found that for the case of a single edge crack, the field intensity factors are greater than those of double edge cracks, and moreover the electric loads can either promote or retard crack growth, depending on the magnitude and direction of the applied electric loads.  相似文献   

18.
界面端附近裂纹的应力强度因子   总被引:3,自引:1,他引:3  
许金泉  姜菊生 《力学季刊》1998,19(3):221-227
结合材料的断裂形式可分为从界面端产生裂纹(沿界面或向母材内部层折)然后断裂与稍稍离开界面端处产生裂纹然后断裂这两种情况,在金属/陶瓷类结合材料中,后者出现的概率更大,本文利用结合材料界面端的奇异应力场和叠加原理,给出了界面端附近裂纹的应力强度因子近似计算公式,并用边界元数值计算验证了其有效性。  相似文献   

19.
The mode I stress intensity factor for a small edge crack in an elastic half-space is found when the space is in contact with two stratified fluids of different temperatures, the boundary between the fluids oscillating sinusoidally over the solid surface. The variation in the stress intensity factor, which may lead to thermal fatigue crack growth, is examined as a function of time, crack depth, amplitude and temporal frequency of oscillation, surface heat transfer coefficient and material properties of the half-space. It is shown how this ‘boundary layer’ solution may be applied to problems involving finite geometries.  相似文献   

20.
This paper examines subcritical cracking in a rock panel or slab containing either a pre-existing edge or a center crack perpendicular to the panel surface. The panel is subject to periodic surface temperature variation on one side of the panel while the other is kept at a constant temperature. The thermally induced stress intensity factors are determined using superposition technique by employing the fundamental point load solution for an edge crack or a center crack in a slab of finite thickness. Rock panel is modeled as a long elastic strip with either a free or a fully constrained lateral end condition. The temperature variations versus time at various depths of the rock panel appear roughly as a sinusoidal function. The lateral thermal stress for the free end case is larger than the constrained end case; whereas stress intensity factors for both edge and center cracks in the constrained end slab are 1000 times larger than that of free end case. Subcritical crack propagation in rock panels on façade is then estimated as a function of time. This subcritical crack propagation continues until a critical crack size is attained and the rock panel will fail under wind load. This new theoretical framework provides a new paradigm to examine the mechanisms of time-dependent cracking in rock panels on façade of buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号